

Indonesian Agency for Agricultural Research and Development Ministry of Agriculture

* Strategic Approach to the Improvement of Agricultural Productivity towards Food Security in Indonesia

Contents of the Presentation

☑ Introduction → Important roles of Agriculture & Food Security for Indonesia Main Problems for Enhancement of Food Security Challenges for Food Security & Sustainability Impact of Climate Change on Agricultural Production Challenges for Agricultural Technology & Food Security Improvement of Agricultural Productivity Development Approach & Strategy Development of Agricultural Technology Closing Remarks

Important Roles of Agriculture for Indonesia

Agricultural is a prime mover of national & regional economic development

Contribute to GDP's growth & export earning
Provide food, fiber, energy & raw material for industry

Create job opportunity & income for the people

Important Role of Food Security for Indonesia

Food is not everything but without food is nothing

- Stability in the aspect of social, economic, politic and national security
- \boxtimes Quality of the people and sustainability of natural resources
- ⊠ People's welfare and employment creation
- \boxtimes Life sustainability of people and the country
 - Government of Indonesia must obtain and maintain national food security \rightarrow Act No. 7/1996

Projection of rice consumption in Indonesia, 2006-2020

	Year	Population (million)	Consumption (kg/year/person)	Consumption (000 t)
-	2006	228.50	137.03	31,312
	2007	231.45	135.67	31,402
	2008	234.44	134.33	31,492
-	2009	237.46	133.00	31,582
÷.	2010	240.52	131.68	31,673
	2011	243.63	130.38	31,764
	2012	246.77	129.09	31,855
	2013	249.95	127.81	31,947
	2014	253.18	126.55	32,039
	2015	256.44	125.29	32,131
	2016	259.75	124.05	32,223
-	2017	263.10	122.82	32,315
	2018	266.50	121.61	32,408
	2019	269.93	120.40	32,501
	2020	273.42	119.21	32,595

Condition of food crop's production in Indonesia

Commodity	2003	2004	2005	2006	2007
Rice	52.138	54.089	54.151	54.455	57.157
Maize	10.886	11.225	12.524	11.610	13.288
Soybean	672	724	808	748	593
Peanut	786	838	836	838	789
Mungbean	_	310	321	316	323
Cassava	19.507	19.425	19.321	19.987	19.988
Sweet potatoes	1.991	1.902	1.857	1.854	1.887

Some of agricultural commodities are still imported Cereals, tuber & fruit crops as alternatives food sources In 2008, Indonesia is already self sufficient in rice production

Main Problems for Enhancement of Food Security

- Increase of food production especially rice is less than that of requirement due to bio-physical constraints
- Land degradation, climate variability, pest and diseases enemy, and conversion of agricultural land
- Availability of food materials in the global market will become limited with high price
- \boxtimes Increase price of production inputs and energy
- \boxtimes Limited purchasing power of poor people
- \boxtimes Limited utilization of alternatives local food crops
- \boxtimes Competitive utilization of some food crop's production with bio-energy
- \boxtimes Lack of infrastructures \rightarrow irrigation & post harvest

Conversion plan of lowland based on Land Utilization Planning of Distric

Region	Lowland area (ha)			Utilization plan of lowland	
	Total	Non-irrigated	Irrigated	Converted	Maintained
Sumatera	2,036,690	414,780	1,621,910	710,230	911,680
Java and Bali	3,933,370	442,120	3,391,250	1,669,600	1,721,650
Kalimantan	1,253,130	375,200	877,930	58,360	819,570
Sulawesi	982,410	124,270	858,140	414,290	443,850
NT & Maluku	566,100	67,050	499,050	180,080	318,990
Papua	131,520	65,060	66,460	66,460	
Total	8,903,220	1,488,480	7,314,740	3,099,020	4,215,740

In Indonesia, conversion of agricultural land 1-1.5% ~ 100.000 ha/year

Badan Litbang Pertanian

Challenges for Food Security and Sustainability

- ✓ Land gradation & high input price → development of low external input technology
- Water scarcity → development of on-farm water reservoir & water management saving technology
- Abundant local food crops → development of post harvest & simple food technology
- Available sub-optimal land resources → development of suitable land reclamation & management technology
- Abundant of agricultural wastes → development of processing technology for organic fertilizers & bio-energy

Planted Crops & Cropping System on Swamplands

Food crops : rice, corn, soybean, mungbean, peanut, cassava, sweet potato

Horticultural crops : vegetable and fruit crops

Estate crops : Coconut, palm oil, rubber, coffee, cacao, pepper, ginger

Cropping systems : monoculture, inter-cropping, mix-cropping

Impact of Climate Change on Agricultural Production

- \boxtimes Shift in planting season
- \boxtimes Increase flood & drought of agricultural land
- o Degradation of land & water resources,
- o Damage & reduce the capacity of infrastructure
- o Reduce cropping area & production
- o Trigger of pest outbreaks
- o Decrease crop's productivity, quality & efficiency
- o Cause forest and crops fire

Impact of Climate Characteristic on Drought Area & Production Lost of Rice

Year	Area of drought (ha)		Climate characteristic
	Drought	Lost	=
1991	868,0	192,3	El-Nino
1993	67,0	20,4	Normal
1994	544,4	161,1	El-Nino
1997	504,0	88,5	El-Nino

Challenges of Climate Change for Agricultural Technology & Food Security

- Development of high yielding & low methane emitting crop varieties
 - Development of soil & water management with low methane emission
- \boxtimes Development of crop varieties tolerant to drought
- Development of crop varieties tolerant to submergence
- Development of crop varieties tolerant to salinity
- Development of water harvesting technology
- Development of efficient water management technology

Improvement of Agricultural Productivity

Development Approach & Strategy

- Regional, ecosystem, integrated development approach of agriculture based on local resources capacity & sustainability
- Improve agricultural land conditions by promoting organic fertilization from agricultural wastes
- Optimum utilization of cultivated lands using appropriate land, water & crop management techniques
- Gradually develop & improve agricultural infrastructures especially for rice based-farming system areas
- Expansion of agricultural areas with very selective utilization & high consideration of agricultural, natural resources, ecological sustainability
- Agricultural development should be directed to integrated farming system

Improvement of Agricultural Productivity

Development of Agricultural Technology

- Response to the problems and user community needs
- Support utilization of local specific resources optimally
- Low external inputs sustainable agricultural technology
- More efficient use of production inputs, water and energy
- Improve agricultural land conditions and sustain natural resources with minimum agricultural wastes

Rice Seedling Machine

Capacity : 100 tray/hour

Weeding Machine

On-farm Water Reservoir

Harvesting Machines

Mesin Sabit (Mower)

Modifikasi : (Hasil kerjasama BBP Mektan dengan PT Shang Yang Seri)

Corn Cob Furnace

Chopping Machines

Rice straw chopper

Capacity : 1 ton/hour

Cassava chopper

Machines for Processing Jathropha curcas

Capacity 200-300 kg/day, diesel 8.5 hp Rendement 27%.

ssing <mark>Machine</mark>

Processing Units for Bio-diesel, Bio-ethanol, Bio-gas

Closing Remarks

Strong commitment and good coordination among related stakeholders with better development approach, strategy, and technology are needed for improving production and maintaining natural resources

