

Welcome

То

Bangladesh

Presentation

Status of Agricultural Engineering Research and Development in Bangladesh

Bangladesh Country Paper

M. Harun-ur-Rashid Director General Bangladesh Agricultural Research Institute Email: dg.bari@bari.gov.bd

Population, Cropped Area and Contribution of Agriculture to GDP

Year	Net cropped area (mha)	Total cropped area (mha)	Total population (million)	Population in agriculture (%)	Contribution of agri. to GDP (%)
1970	8.81	13.29	71.48	79	59.40
1980	8.45	12.94	87.48	57	54.10
1990	8.35	14.06	111.46	66	36.85
2000	8.13	14.27	123.15	62	25.58
2005	8.02	14.21	150.00	62	23.5

Production Trend of HYV Rice

Year	Rice production (million ton)					
	Local	HYV	Total			
1970	10.86(92%)	0.92(8%)	11.78			
1980	8.12(65%)	4.42(35%)	12.54			
1990	7.57(43%)	10.13(57%)	17.70			
2000	5.35(23%)	17.72(77%)	23.07			
2005	3.61(13%)	23.26(87%)	26.87			

Other Crops (HYV): Wheat-100%, Maize-100%, Potato-80%

Agricultural Engineering R&D: Major Fields

- 1. Farm Power and Mechanization (FPM)
- 2. Irrigation & Water Management (IWM)
- 3. Post-harvest Processing (PHP)

Trend of Power Sources in Agriculture

Power	Power	Year					
sources	rating	1960	1977	1984	1989	1996	2005
Animal (million)	0.56	9.75	11.16	10.17	11.91	12.00	12.15
Human (million)	0.074	14.04	17.01	17.41	32.57	34.53	36.38
Tractor	30	-	300	400	1000	2000	20,000
Power tiller	8	-	200	500	5000	100,000	300,000
DTW	22	-	4461	15,519	22,448	24,506	27,117
STW	6	-	3045	67,103	223,588	325,360	1,128,99
LLP	6	-	28,361	43,651	57,200	41,816	99,255
Power thresher	7	-	-	600	4000	15,000	155,000
Maize Sheller	7	-	-	-	-	100	700
Farm Power Available (KW/ha)	-	0.24	0.303	0.317	0.501	0.613	1.09

Farm Power & Mechanization

Agricultural Machinery Promotion Organizations

- NARS Institutes BARI, BRRI, BSRI, BARC
- University BAU
- International Organizations CIMMYT, IRRI
- NGOs RDRS, Practical Action (ITDG)
- Private Manufacturers- Alim industrues, Janata Enterprise, Rahman Engg., etc.

Present Status of Mechanization

- Land preparation : > 80% mechanical power
- Sowing/planting : <10% by machine (Initial
- Irrigation

: >95% by power operated TW/pumps

stage but encouraging)

Harvesting : <10% Rice-wheat harvesting by machine; others mostly manually

Present Status of Mechanization (Cont.)

Threshing

- **Winnowing**
- **Drying**

Milling

- : Rice-wheat > 50% and maize > 90% by machine
- : Mostly done by manually
- : Sun drying at farmers level, commercial farm started using mechanical dryer
- : About 100% by machine

Present Population of Farm Machinery

- Power tiller : About 300,000
- **Tractor : About 20,000**
- Weeder: More than 200,000
- Seed cum fertilizer distributor: About 60
- **Sprayer: 12,50,000**
- **Combine: About 30**
- Reaper: About 40
- Open drum thresher: 100,000-150,000
- Closed drum thresher : 40,000 50,000
- Winnower: About 500
- Dryer: About 500 (including rice mill dryer)

Trend of Agricultural Mechanization

- Shifting bullock power to mechanical power
- Irrigation facility widely spreading
- Threshing/shelling equipment spreading quickly
- High demand of harvesting machine

Role of Machinery Researchers

- Prototype development
- On farm testing
- Performance monitoring and evaluation
- Provide manufacturing guidelines
- Checking manufacturing standard
- Assist promotional activities

Agricultural Machinery Manufacturing

- Farmers demand based
- Unfavorable govt. policy
- Poor manufacturing of agril. machinery
- Absence of adequate design and fabrication guidelines
- Lack of technical facilities, and credit support for local manufacturers
- Absence of product standard and quality certification
- High production cost (material cost)

Land Preparation by Power Tiller

Useful for fragmented land

- Suitable for both dry and wet land preparation (puddling)
- Chinese brand PT is well accepted by the farmers for low cost (US\$ 1000)

Versatile uses (Irrigation, seeding, transport, milling)

Power Tiller Operated High Speed Tiller

- Quality tilth for dry land cultivation
- The rotary speed 500-600 rpm
- Time saving about 70%
- Cost saving about 45%
- Yield increase of onion, garlic and potato 15-20%
- Very popular for onion and garlic

BARI Inclined Plate Seeder

Uses for maize, wheat, pulses & oilseeds

Facilitates uniform placement of seeds

Ensures good germination and emergence of seed

Saves seed 30-40%

Power Tiller Operated Seeder (PTOS)

Advantages

- Tilling, seeding & laddering -3 operations in single pass
- Minimize turn around time
- Residue managed properly
- Seed saved by 20%
- Seeding cost reduced by 35-40%
- > Applicable for wheat, mungbean, lentil, chickpea, jute, rice etc.

Potato Planter

- Furrow opening, seed placement, seed covering, fertilizer application and earthing up at a time
- Seed spacing
- ✤ Planting capacity
- Planting cost by machine
- Conventional cost

- : 25 x 60 cm
- : 25 dec. per hr
- : US \$ 20 per ha
- : US \$ 100 per ha

Potato Digger

- Digs and exposes potatoes above the soil surface
- Save time and cost about 34%
- Harvesting loss is minimum
- Field capacity 0.07 ha/hr
- Price: US \$ 100

Self-propelled Reaper

Easy access to field
Lighter weight
One operator needed
Field capacity 0.20 ha/hr
Price: US \$ 900

Open Drum Power Thresher

- Female workers can operate
- Capacity 350 to 400 kg/hr
- Locally fabricable
- Straw remains unbroken
- Threshing cost
 - Machine US \$ 1.7 per ton
 - Traditional US \$ 2.7 per ton
- Limitation: Operator should wear goggles

Multi-crop Power Thresher

- Threshes rice, wheat and pulses
- Operating mechanism is very simple
- Capacity
 - Wheat: 340 kg/hr
 - Rice: 930 kg/hr
- Price: US \$ 300

Maize Sheller

Reduces drudgery
Operation is simple
Ensures timely shelling
Capacity :3 ton/hr
Price: US \$ 300

Mechanization/Irrigation Policy

- 1. No separate policy on mechanization/irrigation
- 2. There are
 - Agriculture policy
 - Water policy
 - Industrial policy
- **3. Mechanization needs**
 - Favorable govt. policy
 - Credit for researchers, manufactures, users
 - Duty free raw materials and small machines
 - Tax holiday for manufactures
 - Strong extension and after sale services

Financing

- In the past, govt. gave machines free of cost but it did not work
- Now govt. exempted tax and gives small subsidy and it popularizes the machineries
- Some NGOs provide subsidy to popularize machinery
- **Bank loans available to purchase farm machinery**
- Funds to be provided for need based machinery research on competitive basis
- Partial funds should be provided to the manufacturers specially for newly innovated machineries.

Impact of Partial Mechanization

- Increased cropping intensity
- Reduced human drudgery and shortage of draft power
- Developed skills and expertise of farmers, local mechanics
- Increased farmers income
- Created new jobs
- Established private machinery workshops
- Reduced rural poverty
- Improved livelihood of the farmers

Constraints to Agricultural Mechanization

- Inadequate financial resource mobilization
- Unfavorable government policy
- Poor manufacturing of agricultural machinery
- Absence of active extension service
- High turn over of skilled manpower in research organization
- Lack of knowledge and skill for use, repair and maintenance of machinery and irrigation systems
- Scarcity of spare parts, tools and accessories
- Inadequate after sale-services

Conclusions

Farm mechanization is essential for profitable and sustainable agriculture

- Selective mechanization is found to be acceptable and profitable to Bangladeshi farmers
- Farm mechanization helps minimizing yield gap
- Farm machinery need to be extended through DAE, NGOs and manufacturers
- Research on appropriate farm machinery to be strengthened
- Marketing channel of farm machinery to be established
- Regional and International collaboration is necessary

Irrigation and Water Management

Irrigation Promotion Organizations

- NARS Institutes BARI, BRRI, BINA
- Other Public Organizations BADC, BMDA, BWDB, LGED
- NGOs RDRS, Proshika

Irrigation Development

- Initially by civil and mechanical engineers
- No knowledge of crops and crop-water requirements
- Expensive infrastructures big canals, dam, DTW etc.
- High water loss, low irrigation efficiency, low productivity, etc.

Irrigated Area Under Different Mechanized Equipment

SI. No	SI. Year Deep tube		ubewell	Shallow tubewell		Low-lift pump		Total irrig
		No.	Area (mha)	No.	Area (mha)	No.	Area (mha)	area (mha)
1	1962	-	-	-	-	1555	0.03	0.03
2	1970	940	0.01	-	-	17846	0.26	0.27
3	1980	9795	0.24	11280	0.06	37389	0.60	0.90
4	1990	22412	0.45	252500	1.13	56500	0.49	2.07
5	2000	25100	0.52	757100	2.64	71600	0.65	3.81
6	2005	27117	0.65	1128991	3.16	99225	0.84	4.65

Source: Bangladesh Agricultural Development Corporation (BADC)

Agency Wise Area Irrigated

Energy Use In Irrigation

Diesel Electricity

Unplanned installation of tube wells

Poor maintenance of irrigation equipment

Poor management of irrigation water

Groundwater level depletion in Gazipur

Contribution of Agricultural Engineers

- **1. On-farm water management technologies**
- 2. Crop water requirements and irrigation scheduling of field and horticultural crops
- 3. Watershed management (not much)
- 4. Productive irrigated agriculture

Crop Yields Under Irrigated and Non-irrigated Conditions

Crop	Yield (t/ha)				
	Non-irrigated farmers practice	Irrigated			
		Farmers practice	Improved practice		
Potato	8-10	15-20	25-30		
Sweet potato	10-12	20-25	30-35		
Mustard	0.6-0.7	1.2-1.5	2.0-2.5		
Groundnut	1.0-1.2	1.5-2.0	2.5-3.0		
Maize (OP)	0.8-1.2	3.5-4.0	5.0-8.0		
Maize (HYV)	3.0-5.0	5.0-8.0	8.0-12.0		
Gram	0.7-1.0	1.0-1.5	1.8-2.2		
Lentil	0.6-0.8	1.0-1.2	1.5-2.0		
Wheat	1.0-1.8	2.0-3.0	3.5-4.0		
Local rice (Aus)	1.0-1.5	2.5-3.5	-		
HYV Aus	1.5-2.5	3.0-4.0	4.0-5.0		
HYV Aman	2.0-3.0	3.0-4.0	4.0-5.0		
HYV Boro	-	3.5-4.5	5.0-6.0		

Improved earthen channels by Ag. Engineers

Raised bed, mulch and irrigation help reduce salinity for crop production

Locally developed drip systems are suitable for small farms

Papaya irrigation by drip method is profitable

Flow diversion device

Production and Postharvest Losses of Crops

SI. No.	Food crops	Production (million tons)	Postharvest losses (million tons)	Postharvest losses (million Tk.)
1.	Cereals (Rice, wheat, maize etc)	28.38	3.68	18,400.00
2.	Pulses	0.60	0.09	1,200.00
3.	Oil seeds	0.50	0.07	1,190.00
4.	Fruits	1.50	0.45	2,560.00
5.	Vegetables including roots & tubers	6.13	1.84	9,200.00
6 .	Sugar cane	6.50	1.30	1625.00
7.	Spices	.33	0.06	-
Total		42.94	7.49	= 34,175.00 =US\$ 570 million

Effect of Food Shortage

- 44% of the peoples live in absolute poverty
- 30 million peoples are ultra poor
- Acute food insecurity is reflected in endemic malnutrition

In WFS (1996) Bangladesh committed to reduce its malnourished population to half by 2015

Constraints to Achieving Food Security

- Acreage decreasing
- High input cost causing yield loss
- High Post harvest losses
 - Quantitative
 - Qualitative

Technology Developed

- 1. Improved storage structures
- 2. Food processing technologies
 - Processing food grain
 - Processing oil seeds
 - Processing fruit and vegetables, etc.

Technology Developed so far

Storage container for cereals, legumes and oil seeds

Poly. Lined earthen motka

Poly. lined gunny bag

Coal tar coated earthen motka

Tin container

Processing of Fruits and Vegetables into Pickles & Chutney

Garlic pickle

Brinjal pickle

Golden apple pickle

Mixed vegetables pickle

Chalta chutney

Ber chutney

Olive chutney

Golden apple chutney

Processing of Fruits and Vegetables into Jam and Jelly

Golden apple jelly

Palmyra palm jam

Guava jelly

Mango jam

Pineapple jelly

Mixed fruit jam

Preservation of Fruits into Sugar Syrup & in Brine Solution

Jackfruit in sugar syrup

Litchi in sugar syrup

Pineapple in sugar syrup

Golden apple in brine solution

Mango slice in brine solution

Osmotic Dehydrated Products

Pineapple

Banana

Papaya

Impact of Technologies

- Trained people (VDP groups, tribal women and some NGOs) are using these processing technologies as income generation source
- Several trained groups/persons received awards at national level competitions
- The improved storage containers already created good impacts. The containers are used to store farmers' seeds safely for long time.

Recommendations

- Joint research projects may be undertaken to develop appropriate farm machinery and technologies on water management and agro-processing of fruits and vegetables, which are very essential for present Bangladesh context.
- Exchange of ideas and experiences with APCAEM member countries through seminar, traveling workshop, etc.

Recommendations (Contd.)

- Improve the capacity of stakeholders (producers, traders, users and processors) and service providers (associations, financial institutions and NGOs) in understanding and incorporating the principles and practices in value chain management to the strategies of individual organizations.
- Collaboration of agro-based enterprises of APCAEM member countries is essential to improve their product quality.

Thank You