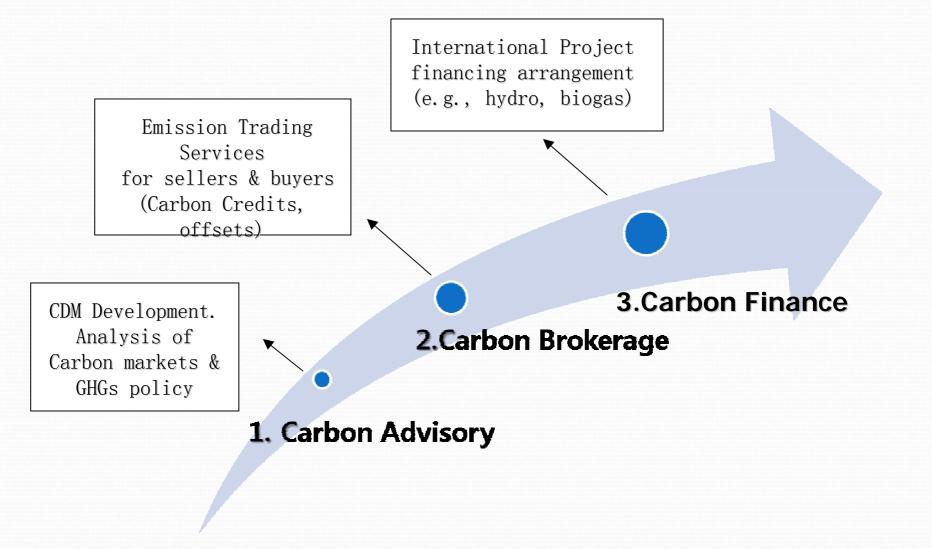
Session IV: Climate Change and Green Business Opportunities Notes on Biofuels Project Development & Methodologies

Henry Hon-Chung Woo Baraka Global Advisors, Inc Seoul, Republic of Korea

United Nations ESCAP, APCAEM and Ministry of Agriculture and Cooperation of the Royal Government of Thailand Regional Forum on Bioenergy Sector Development "Challenges, Opportunities and the Way Forward" 23-25 January 2008, Bangkok Thailand



Outline

- Brief Company Introduction
- Biofuel Production (Project Management, Project development level analysis)
- Biofuel Production (CDM level analysis)
- Words on Current Methodologies

Business Scope of Baraka Global Advisors

Environmental Concerns in Biofuel

- 1. Land Use Competition (Sumatra Example)
- Loss of habitats
- Endangering or extinction of rare species
- Obstruction of migration patterns and corridors
- Degradation of soils and water bodies
- 2. Food crops V.S. Biofuels
- Alleviate poverty
- Food Security (Malaysia example)
- 3. Loss of Biodiversity
- Preferring crop varieties and farming schemes
- Ecological stepping-stones

Environmental Concerns in Biofuel

4. Soil Erosion and Other Soil Degradation

- Increase of annual biofuel crops could lead to soil erosion and other soil degradation
- Use of agriculture and forestry residues could reduce human creation and soil carbon, and increase plant nutrient exports
- 5. Water Use and Water Contamination
- Water scarcity
- Water contamination arise from agrochemicals (Jelly Fish Korea)

Social Impacts and Human Health

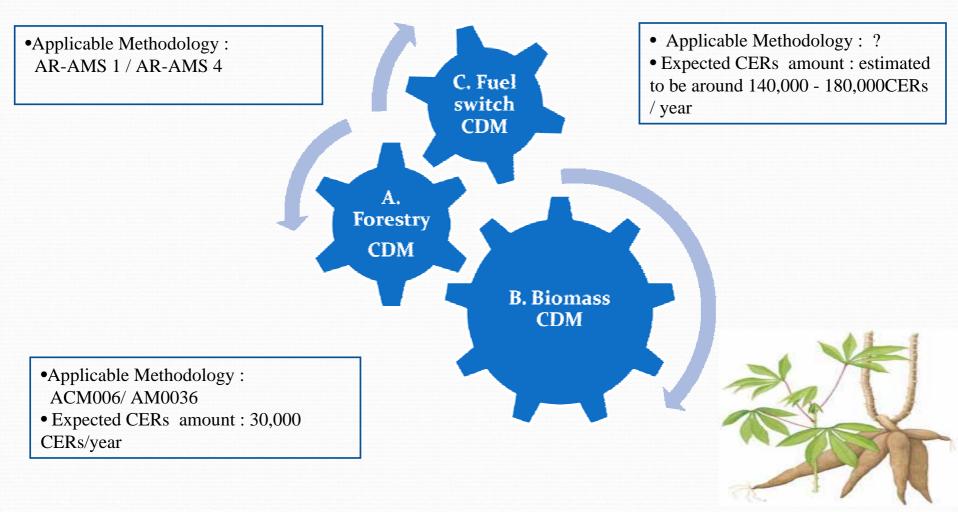
- Restrictions on access to land for small-scale farming
- Labor conditions Labor laws & protection
- Human health Agricultural methods
- Air pollutants Biofuel making is an Industrial process

Challenges

Challenges from future biofuel developments in developing countries

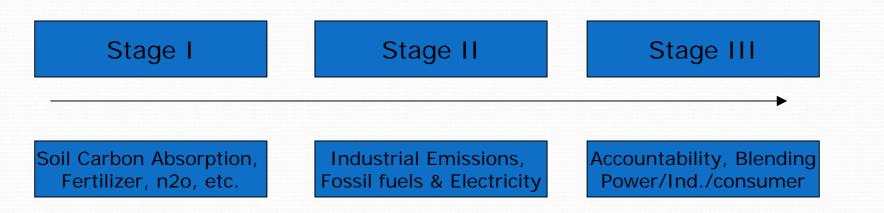
- Diversion of land from into energy crops
- Changes of supply and prices of food (economics of food)
- Access to relevant energy technology

Project Development Level (PM-EPC) -Life cycle Analysis of Biofuel Three key input parameters –


- allocation method for co-product/transport (Net Emission Reductions)
- N2O emissions which evolve from nitrogen fertilizer application and leaf litter decomposition
- soil carbon dynamics (biomass farming)

- Maximizing GHG savings with biofuels benefits
- GHG reductions (20% 90%)
- More efficient land use

How does Biofuel CDM works?



Biofuels at the CDM Level

Biofuels CDM project: Emission Reduction = Baseline – Project Activity - Leakage

Biofuels CDM project - Ambiguity Stage I – Farming Period (Fertilizer, carbon absorption, etc) Stage II – Biofuel Production Stage III – Sales and Marketing of Biofuel

- Production CDM V.S. Fuel Switch CDM
- Project Developers V.S. Owners (Ownership of Carbon Credits)

Suitability analysis of biofuel projects under the CDM

- 1. Assessment criteria
- Significant greenhouse gas reduction?
- Additionality Would the project be viable w/out CDM?
- Monitor-ability, Baseline & Project Activity, End-Users
- Sustainable development contribution
 - Energy security of supply
 - Employment
 - Natural environment

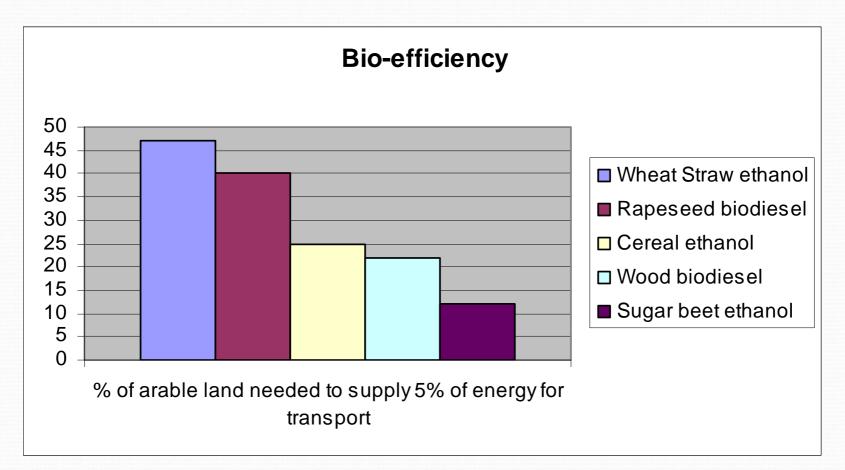
Overall viability

- Achieve a minimum internal rate of return
- Help in long-term sustainability of the project

Suitability analysis of biofuel projects under the CDM - II

- 2. General Barriers (things you should tell your CDM project developers)
- Regulatory barriers What are the domestic law?
- Technological barriers
- Market potential
- Biomass supply Quantity, proximity (PROJECT ACTIVITY)

Meth. No	Туре	Descripition	GHG reduction	Host country	Title	Remark
69	Biofuel	Biodiesel from oil seeds on Jatropa and Pongamia trees (=NM108)	26 ktCO2	India	30 TPD Biodiesel project in Adra Pradesh, India	С
82	Biofuel	85000 litre ethanol/dayfrom sugar cane molasses for a 10% blend	53 ktCO2	Thailand	Baseline methodology for the production of sugar cane based anhydrous bio-ethanol for transportation using LCA (Khon Kaen fuel ethanol project)	С
108	Biofuel	Biodiesel from oil seeds on Jatropa and Pongamia trees & waste oil (=NM69)	26 ktCO2	India	Biodiesel production and switching fossil fuels from petro-diesel to biodiesel in transport sector - 30 TPD Biodiesel CDM Project in Andhra Pradesh, India. Clarifications submitted	С
109	Biofuel	Methyl-ester biodiesel from sunflower on unused land (=NM129)	33 ktCO2	Thailand	Sunflower Methyl-Ester Biodiesel Project in Thailand	С
129	Biofuel	Methyl-ester biodiesel from sunflower on unused land (=NM109)	33 ktCO2	Thailand	Generalized baseline methodology for transportation Bio-Fuel production project with Life-Cycle- Assessment	С
142	Biofuel	10% Palm oil methyl ester added to diesel	218 ktCO2	Thailand	Palm Methyl Ester - Biodiesel Fuel (PME-BDF) production and use for transportation	С
180	Biofuel	Production of waste cooking oil based biodiesel for use as fuel	123 ktCO2	China	BIOLUX Benji Biodiesel Beijing Project	Α
185	Biofuel	Baseline methodology for the production of sugar cane based anhydrous bio-ethanol for transportation using LCA.(=NM82)	40 ktCO2	Thailand	Khon Kaen fuel ethanol project	В
223	Biofuel	Baseline methodology for Biodiesel production from imported or domestically sourced biomass-derived oil, using a life cycle analysis approach.	205 ktCO2	South Africa	Western Cape Biodiesel Project	С
224	Biofuel	Bio-diesel from crude palm oil/ Jatropha oil/oil from any another oil crop for consumption as replacement of liquid fossil fuel	60 ktCO2	India	Manufacturing of Bio-diesel from Crude Palm oil and Jatropha Oil	С
228	Biofuel	Biodiesel from oilseeds in dedicated plantations on severely degraded land and underutilized agricultural land. Consumers is a captive fleat within th boundary.	335 ktCO2	Brazil	AGRENCO Biodiesel Project in Alta Araguaia	WIP
233	Biofuel	Methodology for vegetable-derived fatty acid methyl ester biodiesel production for transportation (=NM142)	143 ktCO2	Thailand	Palm Methyl Ester – Biodiesel Fuel (PME-BDF) production and use for transportation in Thailand	WIP


- A: Means approved by the Executive Board
- B: Means that the project participants/EB must make some changes
- C: Means that a new Project Design Document must be submitted

WIP: Work In Progress

Source: UNEP-Risoe

Comparative corps yields (UK)

Source: Royal Society

Conclusion

- Oil prices, alternative energy needs
- PE, FIs & MNCs
- Industrial activities & employment
- Income of agricultural communities
- Social and environmental concerns
- 2nd Generation technology is needed
- CDM risks Methodologies Development (Hard to generalize, unify)
- UNFCCC Politics (Brazil, Indonesia, US, China, etc)
- Careful Kyoto policies developing monitoring & application
- Challenge = Opportunity (CERs is substantial)
- CDM to support "worthwhile" projects

Thank you!

henry.woo@barakaadvisors.com

Office: 02 2051-3091

Time Co. B/D, 5FL, 827-59, Yeoksam-dong, Gangnam-gu, Seoul, Republic of Korea

Baraka Global Advisors, Inc.

Insight. Intelligence. Network.

