Agricultural Engineering Technologies for Climate Change Mitigation and Adaptation and for **Sustainable Agriculture in the Philippines** bv Victor B. Ella, Ph.D. **Dean and Associate Professor** College of Engineering and Agro-industrial Technology University of the Philippines Los Banos, College, Laguna Philippines 3rd TC Meeting, UN-APCAEM, Beijing, China November 20, 2007

Background Information

General Climate in the Philippines

General Climate in the Philippines

Climate Map of the Philippines based on the Modified Coronas Classification 🔮 , TypeI Type II Type III Type IV

Description

Type 1- Two pronounced season: dry from November to April wet during the rest of the year.

Type II- No dry season with a very pronounced rainfall from November to January.

Type III-Seasons are not very pronounced relatively dry from November to April and wet during the rest of the year.

Type IV – Rainfall is more or less evenly distributed through the year.

Source: PAGASA

General Climate in the Philippines

Source: Phil. Department of Agriculture Manifestations of Climate Change in the Philippines

- Increase in mean temperature
- Decrease in precipitation
- Sea-level rise
- El Nino, La Nina
- Tropical cyclones

Climatic Trends in the Philippines

Annual Temperature and Precipitation in the Philippines: Deviations from Normal

Normal Annual Temp: 25.7°C

Normal Annual Precip: 2,325 mm

Source: Hulme and Sheard (1999)

Relative Annual Mean Sea Level in Manila, South Harbor

Source: Hulme and Sheard (1999)

Drought Occurrence in the Philippines over the Last 3 Decades

Event	Areas affected
1968-1969	Bicol and the rest of the Philippines except llocos and Cagayan Valley
1972-1973	Central Luzon, Visayas and Mindanao
1976-1977	Mindanao except Davao
1982-1983	
(Oct 1982-March 1983)	Central Luzon, southern Tagalog, northern Visayas, western Mindanao,
	Ilocos, Cagayan Valley, Bicol
(April-September 1983)	Cagayan Valley, parts of Ilocos
1986-1987	
(Oct 1986-Mar 1987)	Western Luzon, Bicol
(April-September 1987)	Most of Luzon, central Visayas, northeastern Mindanao
1989-1990	Cagayan Valley, Panay Island, Guimaras, northern Palawan, western
(Oct 89-Mar 90)	Mindanao
1991-1992	Central Luzon, southern Tagalog, northern Visayas, western Mindanao,
	Cagayan Valley, Parts of Ilocos
1994-1995	Ilocos, Cagayan Valley, central Luzon, southern Tagalog, Visayas,
	western Mindanao
1997-1998	Northern Mindanao, southern Mindanao, eastern Visayas

Source: PAGASA and Monsalud et al. (2003)

Spatial and Temporal Variability of Rainfall During El Nino Years in the Philippines

Source: PAGASA and Lansigan (2003)

Annual Frequency of Tropical Cyclones that Hit the Philippines

Source: PAGASA

Impact of Climate Change on Agriculture in the Philippines

Estimated Losses in Irrigated Rice Production in the Philippines

Source: BAS and Monsalud et al (2003)

Estimated Losses in Rainfed Rice Production in the Philippines

Source: BAS and Monsalud et al (2003)

Estimated Losses in Corn Production in the Philippines

Source: BAS and Monsalud et al (2003)

Estimated Losses in Production of Other Crops in the Philippines

Source: BAS and Monsalud et al (2003)

Trend in Rice Production and Rice Yield in the Philippines

Trend in Corn Production and Corn Yield in the Philippines

Spatial Variability of Rice Production in the Philippines

Palay Production by Province, 1994-2005

Year: 2005 Cereal Type: Palay

1	582	-		38	253	(15)
46	876	•		81	112	(16)
81	384	-		135	722	(16)
144	061	*		293	280	(16)
306	196	-	1	136	623	(15)

Datasource: Philippines Mapdata : BAS

Source: BAS

Spatial Variability of Corn Production in the Philippines

Corn Production by Province, 1994-2005.

Year: 2005 Cereal Type: Corn

	51	-	1	019	(15)
1	216	4	13	484	(16)
13	645		42	027	(16)
42	035	1	89	843	(16)
97	372	Ë	651	136	(15)

Datasource: Philippines Mapdata : BAS

Source: BAS

Agricultural Engineering Technologies for Climate Change Mitigation and Adaptation Water conservation, water saving and irrigation technologies

- Small Water Impounding Systems
- Small Farm Reservoirs
- Rainwater harvesting
- Small diversion dams
- Shallow tubewell
- Drip irrigation

Small Water Impounding Systems

Typical service area: 25 to 150 has Typical height: < 30 m

Source: NIA and BSWM

SMALL WATER IMPOUNDING PROJECT/DIVERSION DAM

Summary of Completed Projects by Region

Cumulative 1974-2001 As of December 2001

Region	No.	Service Area (Ha.)	No. of Beneficiaries	Project Cost (P'000)
CAR	147	1,957	2,320	56,723.52
1	160	6,319	5,506	165,168.97
2	134	7,254	5,112	268,877.91
3	143	4,967	3,614	196,785.70
4	109	3,010	3,260	58,609.29
5	120	5,300	5,006	101,163.77
6	105	3,971	2,920	68,919.22
7	37	1,026	1,334	59,539.36
8	124	3,370	1,892	99,587.41
9	66	2,236	1,962	52,219.88
10	74	3,177	2,864	51,881.16
11	84	6,699	3,984	167,199.07
12	65	7,574	3,017	44,813.95
CARAGA	113	3,546	2,575	63,788.79
ARMM	23	808	622	2,650.00
TOTAL	1,504	61,214	45,988	1,457,928.00

Source: NIA and BSWM

Small Farm Reservoirs

Source: NIA and BSWM

Typical service area: 0.5 to 1 ha Typical embankment height: < 4 m

SMALL FARM RESERVOIR (SFR) Summary of Completed Projects by Region Cumulative 1995-2003

As of December 2003

	Completed / Operational				
Region	No.	Service Area (Ha.)	No. of Beneficiaries		
CAR	1,825	1,825	1,825		
1	3,734	3,734	3,734		
2	2,961	2,961	2,961		
3	5,903	5,903	5,903		
4	718	718	718		
5	385	385	385		
6	1,009	1,009	1,009		
7	837	837	837		
8	1,081	1,081	1,081		
9	876	876	876		
10	538	538	538		
11	795	795	795		
12	1,274	1,274	1,274		
CARAGA	325	325	325		
ARMM	21	21	21		
TOTAL	22,282	22,282	22,282		

Source: NIA and BSWM

Rainwater Harvesting

Source: Anonymous

Small Diversion Dams

Typical height: 0.50 - 2.00 meters Typical service Area: about 40 hectares.

Source: NIA

SMALL DIVERSION DAM (DD) Summary of Completed Projects by Region Cumulative 1974-2003 As of December 2003

	Completed / Operational				
Region	No.	Service Area (Ha.)	No. of Beneficiaries		
CAR	138	1,794	2,142		
1	115	4,625	4,146		
2	36	1,972	1,076		
3	63	1,913	1,357		
4	96	3,209	3,268		
5	88	3,996	3,953		
6	102	3,663	2,853		
7	26	1,016	894		
8	65	2,755	1346		
9	49	1,566	1,432		
10	58	2,780	2,528		
11	57	4,341	2,498		
12	63	8,465	3,478		
CARAGA	86	3,276	2,441		
ARMM	2	115	70		
TOTAL	1,044	45,486	33,482		

Source: NIA and BSWM

Shallow Tubewells

Typical Depth: 6 to 18 m Typical Service Area: 3 to 5 has

SHALLOW TUBEWELL (STW) Summary of Completed Projects by Region Cumulative 1995-2003

As of December 2003

	Completed / Operational				
Region	No.	Service Area (Ha.)	No. of Beneficiaries		
CAR	1,185	3,555	2,370		
1	4,616	13,848	9,232		
2	3,830	11,490	7,660		
3	5,168	15,504	10,336		
4	2,069	6,207	4,138		
5	1,648	4,969	3,255		
6	2,611	7,833	5,155		
7	804	2,412	1,608		
8	1,083	3,249	2,166		
9	1,127	3,381	2,254		
10	1,432	4,296	2,864		
11	1,605	4,815	3,210		
12	1,126	3,378	2,252		
CARAGA	1,078	3,234	2,156		
ARMM	780	2,340	1,560		
TOTAL	30,162	90,511	30,216		

Source: NIA and BSWM

Drip Irrigation

Sources: SANREM, USAID and PCARRD

Soil erosion control and soil conservation technologies

- Bench terraces
- Rockwalls
- Drainage canals
- Contour ditches

Energy Production technologies

Renewable energy

Biofuels

Agricultural Waste Management Technologies

Crop residue management
Livestock waste management

Other AE technologies

Computer simulation modeling
Weather forecasting
Remote sensing

POLICY INITIATIVES in the PHILIPPINES

- Creation of Inter-Agency Committee on Climate Change (May 1991)
- Signing of UN Convention on Climate Change (signed in June 1992 and ratified on August 2, 1994)
- Signing of Kyoto Protocol (signed on April 15, 1998 and ratified on November 20, 2003)

Source: Ouano (2007)

POLICY INITIATIVES in the PHILIPPINES (cont'd)

- Designation of the Department of Environment and Natural Resources (DENR) as the National Authority for Clean Development Mechanism (CDM) on June 20, 2004 thru Executive Order 320
- Creation of Presidential Task Force on Climate Change thru Administrative Order No. 171 on February 20, 2007

Source: Ouano (2007)

RECOMMENDATIONS

More research on climate change mitigation and adaptation in the Philippines geared towards sustainable agriculture using modern techniques

Greater involvement of agricultural engineers in climate change mitigation and adaptation

RECOMMENDATIONS (cont'd.)

Policy-makers involved in climate change issues in the country should tap agricultural engineers, hydrologists and simulation modelers so as to provide a sound basis for additional policy formulation in the country

Strict implementation of policies on climate change mitigation and adaptation should be enforced

Contact Information

Dr. Victor B. Ella **Dean and Associate Professor** College of Engineering and Agro-Industrial Technology University of the Philippines Los Banos College, Laguna Tel/Fax: (63-49) 536-2387 E-mail: vbella@up.edu.ph or vbella100@yahoo.com