

Conservation Agriculture

A. D. (Jack) McHugh

Li Hongwen (CAU), Ma Zhongming (GAAS), and Cao Xinhui (GAMB)

<u>Land degradation has caused substantial</u> <u>decline in agricultural productivity</u>::

- 16% of arable land in developing countries is "degraded"

Examples of % agricultural lands seriously degraded *:

- 75% of Central America
- 20% of Africa
- 11% of Asia

4 "sources" of the problems:

- to be replaced, or at least modified

- Conventional tillage

- particularly routine ploughing (inversion)
- soil tillage (rotavators, chisels, rippers, discs, etc)

- Removal / incorporation of crop residues

- via ploughing, cultivation, in-field burning, cattle feed, household fuel
- Crop monoculture no rotations
- Random in-field trafficking of equipment
- tractors, harvesters, trailers, etc.

Result:: Wide range - environmental problems

- Land, environment, health and socio-economics:
- 1) surface-water quality and quantity (nutrients, herbicides, siltation)
- 2) soil organic carbon (decline in amount and sequestration, soil structure)
- 3) ground water quality (contamination and declining levels),
- 4) air quality (soil particles and farm chemicals)
- 5) global warming (CO₂ from tractor engines)
- 6) wildlife habitat and ecological diversity (tree and crop residue removal, river siltation, etc)

How are these redressed??

Conservation Agriculture

A Change in the Paradigm of Resource Conservation

Represents:

"a shift in our philosophy towards the land"

"do not beat the land into submission

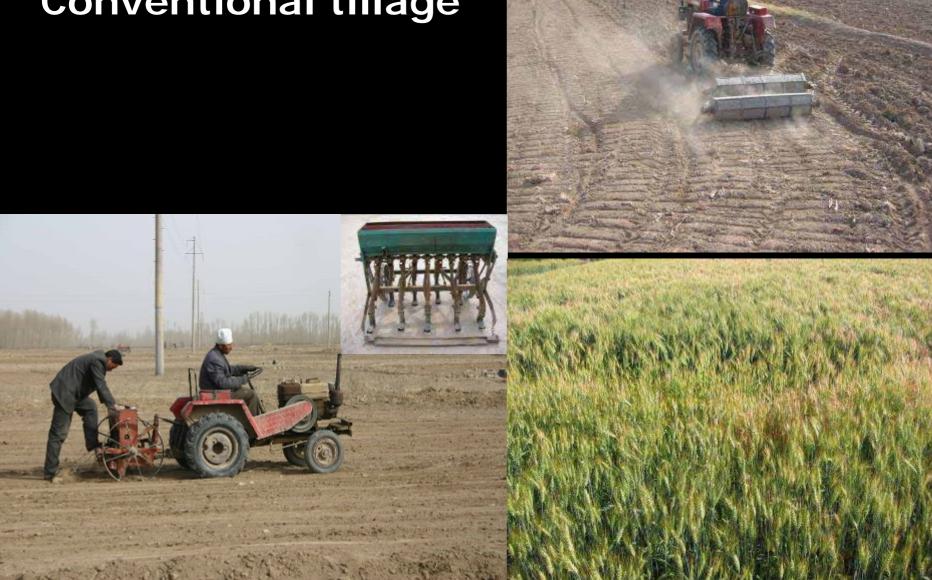
- rather work in harmony with it"

What is Conservation Agriculture?

The four principles of CA are:

- Stop (or reduce) mechanical soil disturbance by tillage No-tillage
- 2 Maintain soil cover with plant residues
- **3** Use of crop rotations and cover crops
- 4 Precise placement of in-field traffic

Promotion of conservation agriculture using permanent raised beds in irrigated cropping in the Hexi Corridor, Gansu, PRC



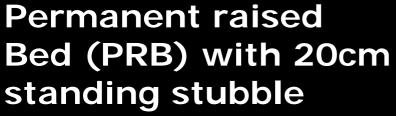
- Demonstrate the effectiveness of permanent raised beds in improving crop, nutrient, residue and water management in wheat / maize systems of the Hexi corridor.
- Develop and test conservation agriculture machinery designed around the 20hp tractors to mechanise PRB in wheat/maize systems.
- >Assess the cost benefit of PRB farming systems.
- Extend conservation agriculture using PRB technology across the Hexi Corridor.

Conventional tillage

Fresh raised bed (FRB)

Bed width: 100cm Height: 20cm

Wheel track: 30cm

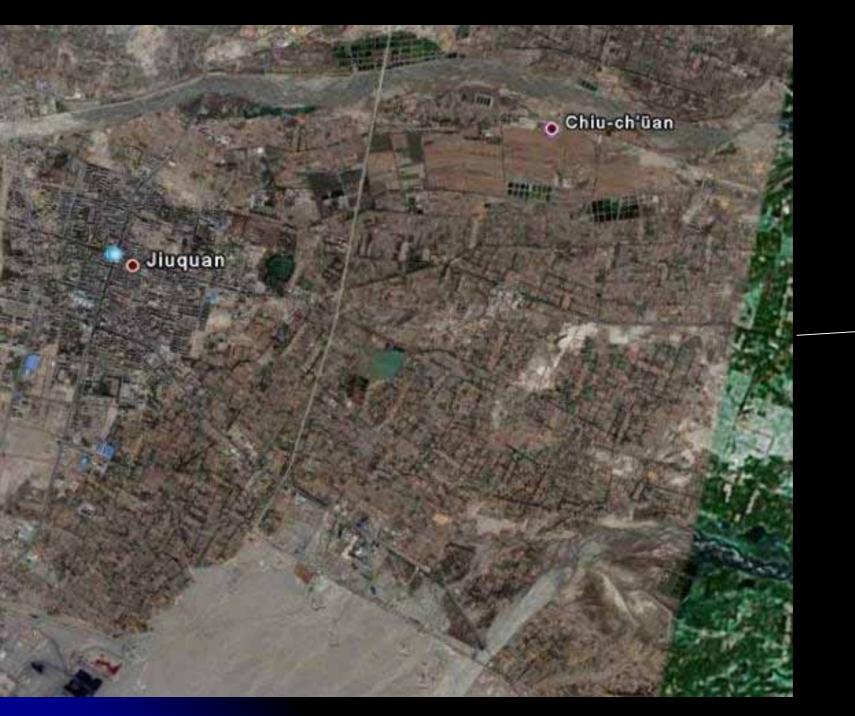


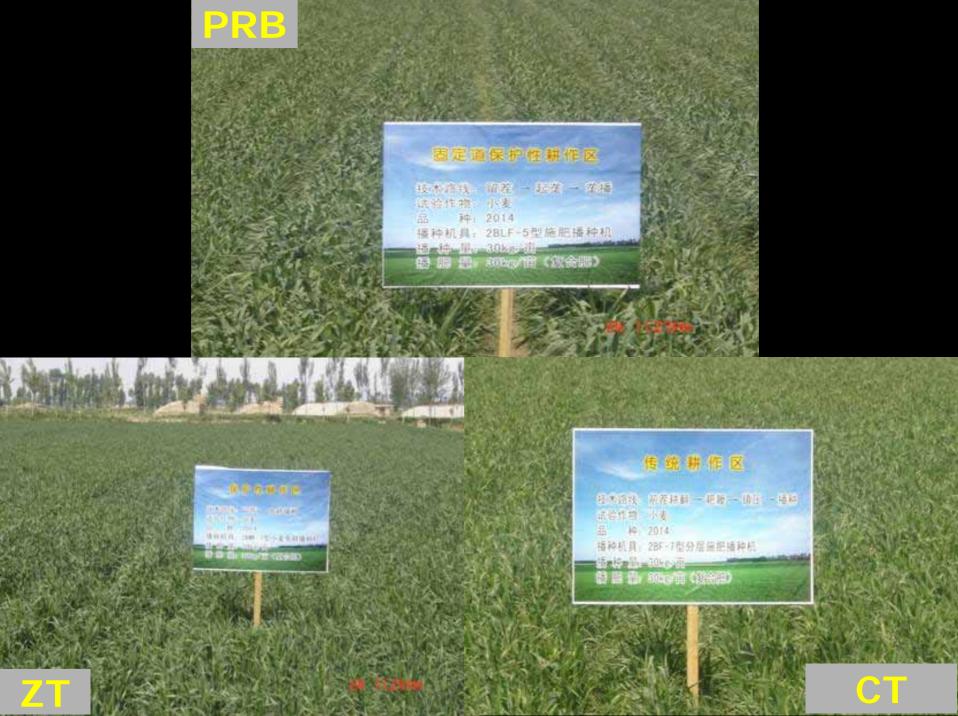
Zero tillage control traffic (ZT)

Bed width: 100cm Wheel track: 30cm



Bed width: 100cm Height: 20cm


Wheel track: 30cm



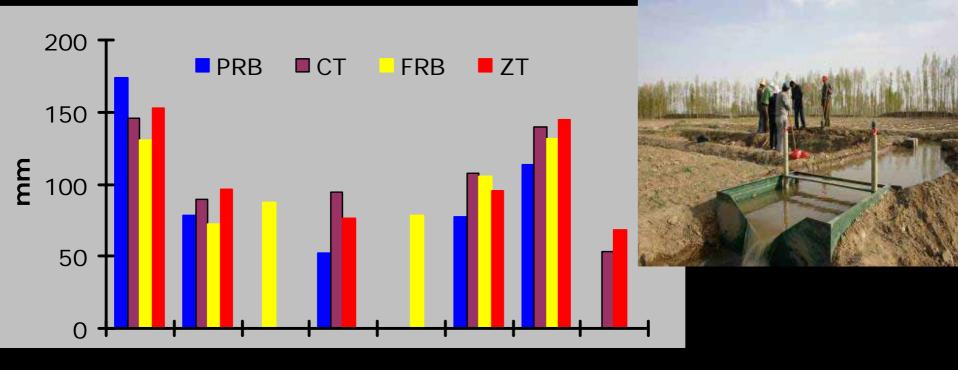
Zhangye Yield

Effect of different options on yield component in 2006

treatment	FRB	PRB	СТ	ZT
emergence (%)	65	66	85	78
spike/mu)	306800	318200	397700	326300
wt/1000 grains (g)	42.4	41.8	40.3	43.5
grains/spike	33	39	37	31

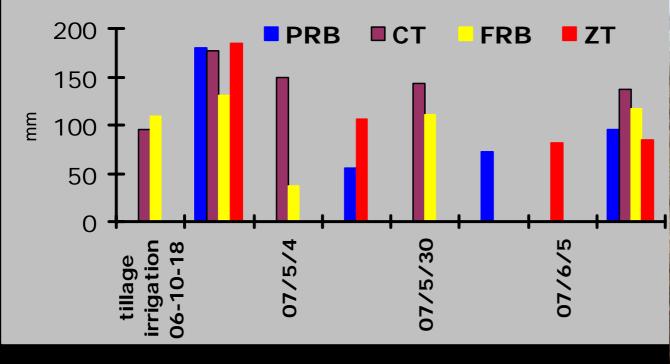
Effect of different options on yield component in 2007

treatment	FRB	PRB	СТ	ZT
emergence (%)	73	74	85	75
spike/mu	474100	370400	406600	368900
wt/1000 grains (g)	40.9	43.0	39.3	41.5
grains/spike	27	34	31	33


Zhangye Yield

Analysis of yield results (2006))				
treatment	F			
	_	0.05		
СТ	6088.58	а		
PRB	5575.87	ab		
ZT	5420.32	b		
FRB	5306.17	b		

Analysis of yield results (2007)				
treatment	Yield (kg/ha)	F		
		0.05		
PRB	7132.20	а		
FRB	6651.75	b		
СТ	6458.85	b		
ZT	6356.40	b		


Average yield (kg/ha)

Year	FRB	PRB	СТ	ZT
2006	5306.17	5575.87	6088.57	5420.32
2007	6651.75	7132.20	6458.85	6356.40
Average	5978.96	6354.04	6273.71	5888.36

Zhangye Irrigation 2006

treatments	water consumption	yield	WUE
	(mm)	(kg/ha)	(kg/mm/ha)
FRB	553	5306	9.6
PRB	393	5576	14.2
СТ	572	6089	10.7
ZT	560	5420	9.7

Zhangye Irrigation 2007

Treatments	water consumption	yield	WUE
	(mm)	(kg/ha)	(kg/mm/ha)
FRB	485	6652	13.7
PRB	447	7132	16.0
СТ	626	6459	10.3
ZT	480	6356	13.2

Shandan 2006

Treatment	Emergence (%)	Yield (kg/ha)	Irrigation (mm)	Cost (Yuan/mu)
PRB	76	5033	439	392
ZT	83	5223	456	364
СТ	86	5161	489	414

Shandan 2007

Treatment	Emergence	Yield	Irrigation	Cost
	(%)	(kg/ha)	(mm)	(Yuan/mu)
PRB	90	7314	214	345
ZT	81	7624	321	358
СТ	91	7104	333	414

Jiuquan 2007

Treatment	-	Yield	Irrigation	Cost
	(%)	(kg/ha)	(mm)	(Yuan/mu)
PRB	82	6645	455	385
ZT	76	6405	536	369
СТ	85	6975	585	388

