
PROMOTION OF BIOGAS AND BIOMASS IN ASIA AND THE PACIFIC

Regional Forum on Bioenergy Sector Development: Challenges, Opportunities and the Way Forward

Alan Dale Gonzales
Executive Director
Full Advantage Co., Ltd.

Objectives of the Study

- → To investigate the current situation of biogas and biomass and their market potential in major countries of Asia and the Pacific;
- → To explore current and next generation biogas and biomass technologies;
- → To explore biomass resources, utilisation and trade;
- → To analyse cross-cutting issues for fostering bioenergy sector development.

Project Structure: Dan Chang Bio-Energy

Owner/Developer : Dan Chang Bio-Energy Co., Ltd.

Major Shareholders : Mitr Phol Sugar Co., Ltd.; Mitr Particle Board;

Others

Location : Dan Chang, Suphanburi, Thailand

Total Capacity : 53 MW

Fuel : Bagasse, cane leaves, wood bark and rice husk

Major Off-takers : EGAT (SPP, 21 years, firm contract)

Mitr Phol Sugar Co., Ltd. (steam + power)

Major equipment : Boilers - 2x120 tph, 68 bar, 510°C (Alstom)

Turbine - 41 MW extraction-condensing (Alstom)

Existing boilers + turbine (from sugar mill)

O&M : Internal

Incentives : BOI privileges, EPPO subsidy

Financing : Project finance

Project Structure: Chia Meng Rice Mill

Owner/Developer : Chia Meng Group (Korat) Co. Ltd.

Major Shareholders: Chia Meng Co. Ltd.

Location : Chakkaraj, Nakorn Ratchasima, Thailand

Total Capacity : 2.5 MW

Fuel : Rice husk

Commissioned Date: March 1997 (COGEN phase 2 Full Scale

Demonstration Project)

Major equipment : Boilers - Reciprocating inclined grate type.

Capacity - 17 tph, 35 bar, 420 oC

Turbine – 2.5 MW fully condensing type

European Supplier : Konus Kessel GmbH, Deutsche Babcock Group

Project Structure: TSH Bio Energy

Owner/Developer : TSH Bio Energy Sdn Bhd

Major Shareholders : TSH Resources Bhd

Location : Kunak, Sabah, Malaysia

Capacity: 14 MW

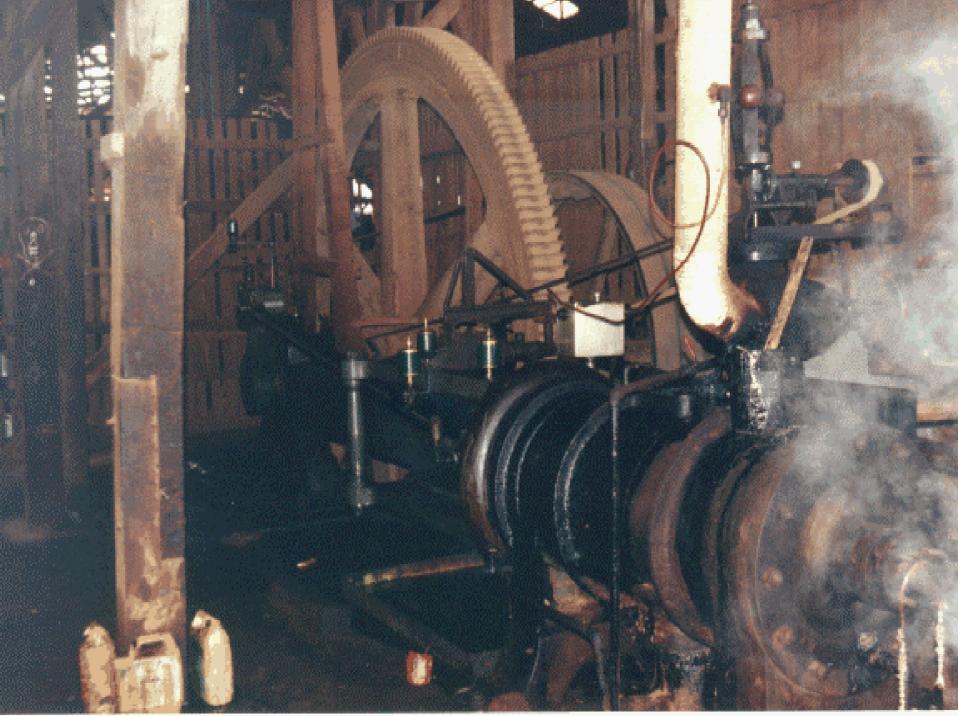
Fuel : EFB (Empty Fruit Bunch), mesocarp fiber

and palm kernel shell

Major Off-takers : SESB (SREP, 21 years, firm contract)

TSH Plantation Sdn. Bhd. (steam + power)

Major Equipment : Boiler - 80 tph, 58 bar, 402°C (Babcock&Wilcox)


through ENCO

O&M : Internal

Incentives : Tax holidays, accelerated depreciation of CAPEX

Financing : Corporate finance

Project Structure: Bee Joo Industries

Owner/Developer : Bee Joo Industries Pte Ltd

Location : Singapore

Capacity: 1.0 MW

Fuel : Wood waste

Major Off-takers : In-house consumption

Major Equipment : Boiler: Biomass-fired, dynamic water-

cooled step-grate steam boiler

Turbine: Single-stage impulse turbine

O&M : Internal

Financing : Corporate finance

Project Structure: Rayong Waste-to-Energy

Owner/Developer : Rayong Municipality

Location : Rayong, Thailand

Total Capacity : 625 kW

Fuel : Biogas

Major Off-takers : PEA (VSPP)

Major Equipment : Gas engine (Jenbacher)

O&M : External contractor

Financing : Government funds

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Energy Consumption from Solid Biomass

Conty	2004	2003	2000	1990
China	21,7904	21,7695	21,3186	200407
India	21,3324	21,1201	201583	175816
Indonesa	450,72	45785	43376	39451
Malay is	1, 3 24	2,637	2,531	2,100
Phlippines	7,614	10306	9, 5 41	7,842
Thaland	7,85	14665	14257	14646
Vie t\ am	224,70	23435	22631	18900
Asia(exduding MiddleEast)	577569	58,8237	565514	50,634

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Energy Consumption from Biogas

Conty	204	203	2000	1990
China	1,28	1, 2 9	1,242	0
India	0	0	0	0
Indneisa	0	0	0	0
Malayis .	0	0	0	0
Phippines	0	0	0	0
Thaliand	0	0	0	0
VielNem	0	0	0	0
Asia(exetuding MobileEast)	1, 5 3	1, 2 5	1, 4 5	61

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Estimation of Agricultural Residues in China, 2006

Туре	Production (ODD tons)	Type of residues	Residue production	Residue generated	Caloific value	Enegy (TJ)
0 0	400.00.4	6	ratio(RPR)	(Ö00 0 tons)	(MJ/kg)	404 000 00
Sugar Cane	100,684	Bagase	0291	29299.04	144	421,906.23
		Top& Trashier	0.302	30,406.57	17.39	528,770.22
Paddy	184,070	Hu s k	023	42,336.10	1427	604,136.15
		Staw(top)	0.447	82,279.29	1024	842,539.93
OilPam Fuit	650	Empty bunch	0.428	278.20	17.86	4,968.65
		Fibre	0.147	9555	17.62	1,683.59
		Shell	0.049	31.85	1846	587.95
		Frond	2.604	1,692.60	9.83	16638.26
		Male bunch	0233	151 <i>.</i> 45	1633	2,473.18
Coconut	290	Hu s k	0.362	104.98	1623	1,703.83
		Shell	0.16	4640	17.93	831.95
		Empty Bunch	0.049	1421	154	218.83
		Frond	0225	6525	16	1,044.00
Cassava	4,318	Stalk	0.088	379.98	1842	6,999.31
Maize	145,625	Corncob	0273	39,755.63	1804	717,191.48
GroundNut	14,722	Shell	0.323	4755206	1266	60,200.91
Soybæn	15,500	Stalk, Leaves, Shel	2.663	41,277.17	1944	802,428.10
TOTAL	465,859			272,969.47		4,014,322.56

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Estimation of Agricultural Residues in India, 2006

Туре	Production (Otto tons)	Type of residues	Residue production	Residue generated	Caloific value	Ene g y (TJ)
	(525 15115)		ratio(RPR)	(Ō00 0 tons)	(MJ/kg)	(10)
Sugar Cane	281,170	Bagase	0291	81,820.47	144	1,178,214.77
		Top& Trashier	0.302	84913.34	17.39	1,476,642.98
Paddy	136,510	Hu s k	023	31,397.30	1427	448,039.47
		Straw(top)	0.447	61,019.97	1024	624,844.49
OilPam Fuit	0	Empty bunch	0.428	00.0	17.86	0.00
		Fibre	0.147	00.0	17.62	0.00
		Shell	0.049	0	1846	0.00
		Frond	2.604	00.0	9.83	00.0
		Male bunch	0233	00.0	1633	0.00
Coconut	11,000	Hu s k	0.362	3,982.00	1623	64627.86
		Shell	0.16	1,760.00	17.93	31,556.80
		Empty Bunch	0.049	539	154	8,300.60
	·	Frond	0225	2475	16	39600.00
Cassava	7,620	Stalk	0.088	670.58	1842	12352.04
Maize	14710	Corncob	0273	4,015.83	1804	72,445.57
GroundNut	4,980	Shell	0.323	160854	1266	20,364.12
Soybean	8 <i>2</i> 70	Stalk, Leaves, Shel	2.663	22,023.01	1944	428,127.31
TOTAL	464,260	(FAO O((; t)		296,225.04		4,405,116.02

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Estimation of Agricultural Residues in Indonesia, 2006

Туре	Production (ŌOO tons)	Type of residues	Residue production	Residue generated	Caloific value	Enegy (TJ)
	(Odd toris)		ratio(RPR)	(ŌOO tons)	(MJ/kg)	(10)
Sugar Cane	30,150	Bagase	0291	8,773.65	144	126,340.56
		Top & Trashier	0.302	9,105.30	17.39	158,341.17
Paddy	54,400	Husk	023	12,512.00	1427	178,546.24
		Straw(top)	0.447	24,316.80	1024	249,004.03
OilPam Fruit	64,255	Empty burch	0.428	27,501.27	17.86	491,172.65
		Fibre	0.147	9,445.53	17.62	166,430.22
		Shell	0.049	31485097	1846	58121.49
		Frond	2.604	167,320.80	9.83	1,644,763.48
		Male bunch	0233	14,971.48	1633	244,484.35
Coconut	16375	Husk	0.362	5,927.75	1623	96,207.38
		Shell	0.16	2,620.00	17.93	46,976.60
		Empty Bunch	0.049	802.375	154	12,356.58
		Frond	0225	3684375	16	58,950.00
Cassava	19,928	Stalk	0.088	1,753.63	1842	32,301.83
Maize	11,611	Corncob	0273	3,169.71	1804	57,181.52
GroundNut	14,700	Shell	0.323	47481	1266	60,110.95
Soybean	749	Stalk, Leaves, Shel	2.663	1,994.69	1944	38,776.84
TOTAL	212,168			301,795.97		3,720,065.88

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Estimation of Agricultural Residues in Malaysia, 2006

Туре	Production (Ō00 tons)	Type of residues	Residue production ratio(RPR)	Residue generated (Ō000 tons)	Caloific value (MJ/kg)	Enegy (TJ)
Sugar Cane	900	Bagasse	0.291	261.90	144	3,771.36
		Top & Trashier	0.302	271.80	17.39	4,726.60
Paddy	2,154	Husk	023	495.42	1427	7,069.64
		Straw(top)	0.447	962.84	1024	9,859.46
OilPam Fuit	75,650	Empty burch	0.428	32,378.20	17.86	578,274.65
		Fibre	0.147	11,120.55	17.62	195,944.09
		Shell	0.049	370685	1846	68,428.45
		Frond	2.604	196,992.60	9.83	1,936,437.26
		Male bunch	0233	17,626.45	1633	287,839.93
Coconut	573	Husk	0.362	207.50	1623	3,367.70
		Shell	0.16	91.71	17.93	1,644.40
		Empty Bunch	0.049	280868	154	432.54
		Frond	0.225	128.97	16	2,063.52
Cassava	375	Stalk	0.088	3297	1842	607.34
Maize	80	Corncob	0273	21.84	1804	393.99
GroundNut	2	Shell	0.323	0.5491	1266	6.95
Soybean	0	Stalk, Leaves, Shel	2.663	0.00	1944	0.00
TOTAL	79,734			264,328.24		3,100,867.89

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Estimation of Agricultural Residues in Philippines, 2006

Туре	Production (Otto tons)	Type of residues	Residue production ratio(RPR)	Residue generated (ŌOO tons)	Caloific value (MJ/kg)	Ene g y (TJ)
Sugar Cane	24345	Bagasse	0291	7,084.43	144	102,015.75
		Top& Trashier	0.302	7,352.22	17.39	127,855.16
Paddy	15,327	Husk	023	3,525.14	1427	50,303.79
		Straw(top)	0.447	6,851.04	1024	70,154.64
OilPam Fuit	373	Empty bunch	0.428	159.83	17.86	2,854.61
		Fibre	0.147	5490	17.62	967.26
		Shell	0.049	1829856	1846	337.79
		Frond	2.604	972.44	9.83	9,559.06
		Male bunch	0233	87.01	1633	1,420.90
Coconut	14,958	Husk	0.362	5,414.76	1623	87,881.61
		Shell	0.16	2,393.27	17.93	42,911.25
		Empty Bunch	0.049	732.93759	154	11,287.24
		Frond	0225	336552975	16	53848.48
Cassava	1,757	Stalk	880.0	154.60	1842	2,847.80
Maize	6,082	Corncob	0273	1,660.42	1804	29,953.91
GroundNut	29	Shell	0.323	9.41545	1266	119 <i>2</i> 0
Soybean	1.03	Stalk, Leaves, Shel	2.663	2.74	1944	5332
TOTAL	62,872			39,838.98		594,371.77

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

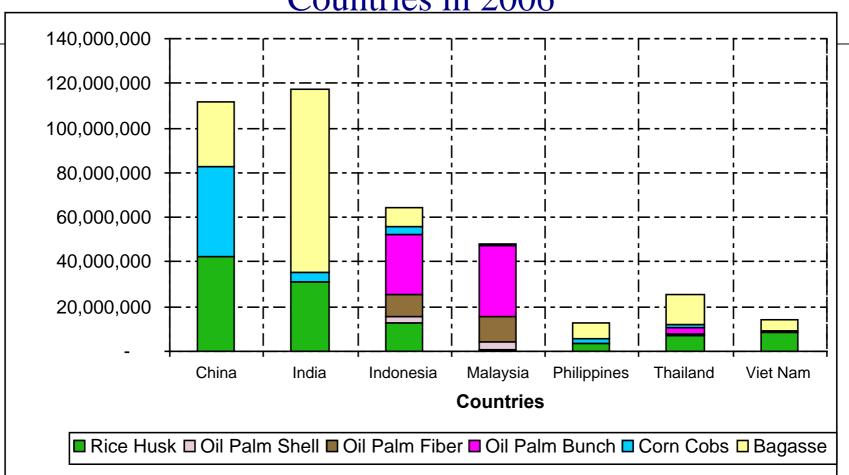
Estimation of Agricultural Residues in Thailand, 2006

Туре	Production (Ō00 tons)	Type of residues	Residue production	Residue generated	Caloific value	Enegy (TJ)
Super Cono	17650	Pogen	ratio(RPR) 0.291	(Ö00 tons) 13,868.51	(MJ/kg) 144	100 706 50
Sugar Cane	47,658	Bagasse Top & Trashier	0.302	14392.75	17.39	199,706.50 250,289.86
Do del r	20,200					
Paddy	29,269	Husk	023	6,731.86	1427	96,063.65
		Straw(top)	0.447	13,083.23	1024	133,972.23
OilPam Fuit	6,519	Empty bunch	0.428	2,789.94	17.86	49,828.39
		Fibre	0.147	958.23	17.62	16,883.98
		Shell	0.049	319.40944	1846	5,896.30
		Frond	2.604	16,974.33	9.83	166,857.67
		Male bunch	0233	1,518.82	1633	24,802.40
Coconut	1,871	Husk	0.362	677.29	1623	10,992.49
		Shell	0.16	299.36	17.93	5,367.47
		Empty Bunch	0.049	91.67802	154	1,411.84
		Frond	0.225	420.9705	16	6,735.53
Cassava	22,584	Stalk	0.088	1,987.43	1842	36,608.41
Maize	3,696	Corncob	0273	1,009.10	1804	18,204.18
GroundNut	117	Shell	0.323	37.791	1266	478.43
Soybean	225	Stalk, Leaves, Shel	2.663	597.84	1944	11,622.08
TOTAL	111,939			75,758.54		1,035,721.41

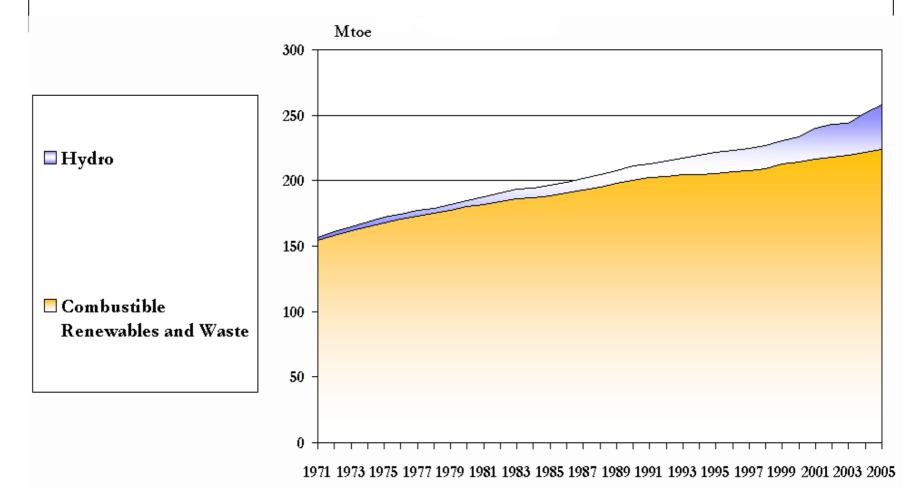
Source: Processed by the Author from FAO Statistics

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

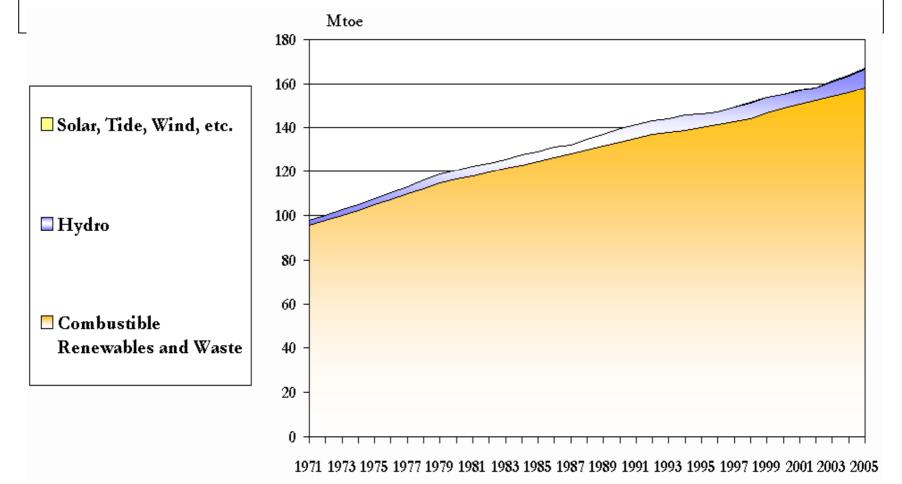
Estimation of Agricultural Residues in Viet Nam, 2006


Туре	Production (Otto tons)	Type of residues	Residue production ratio(RPR)	Residue generated (ÖMD tons)	Caloific value (MJ/kg)	Ene g y (TJ)
Sugar Cane	15679	Bagase	0291	4,562.47	144	65,699.61
		Top & Trashier	0.302	4,734.94	17.39	82,340.56
Paddy	35,827	Hu s k	023	8,240.16	1427	117,587.14
		Straw(top)	0.447	16014.58	1024	163,989.30
OilPam Fuit	0	Empty bunch	0.428	0.00	17.86	0.00
		Fibre	0.147	0.00	17.62	0.00
		Shell	0.049	0.00	1846	0.00
		Frond	2.604	0.00	983	0.00
		Male bunch	0233	0.00	1633	0.00
Coconut	982	Hu s k	0.362	355 <i>.</i> 56	1623	5,770.68
		Shell	0.16	157.15	17.93	2,817.74
		Empty Bunch	0.049	481278	154	741.17
		Frond	0225	220.995	16	3,535.92
Cassava	7,714	Stalk	880.0	678.83	1842	12,504.09
Maize	3,819	Corncob	0273	1,042.70	1804	18810.24
GroundNut	465	Shell	0323	150.1627	1266	1,901.06
Soybean	258	Stalk, Leaves, Shel	2.663	687.59	1944	13366.68
TOTAL	64,744			36893.26		489,064.17

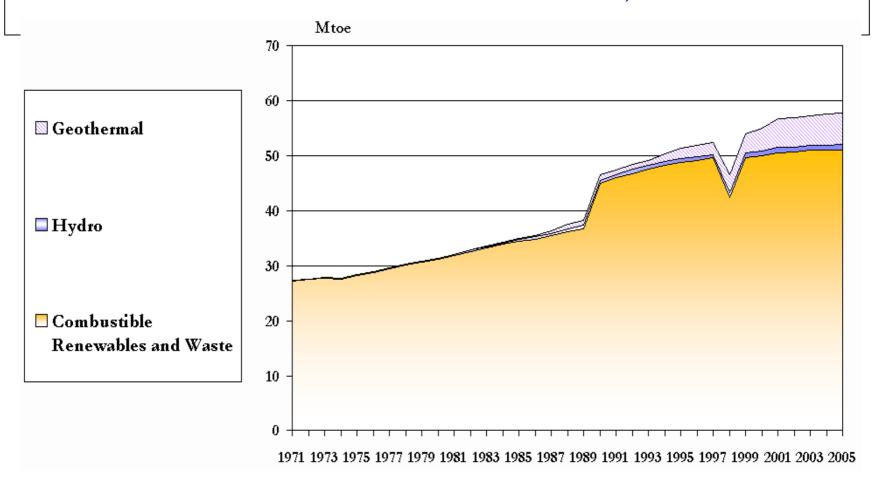
Source: Processed by the Author from FAO Statistics


Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

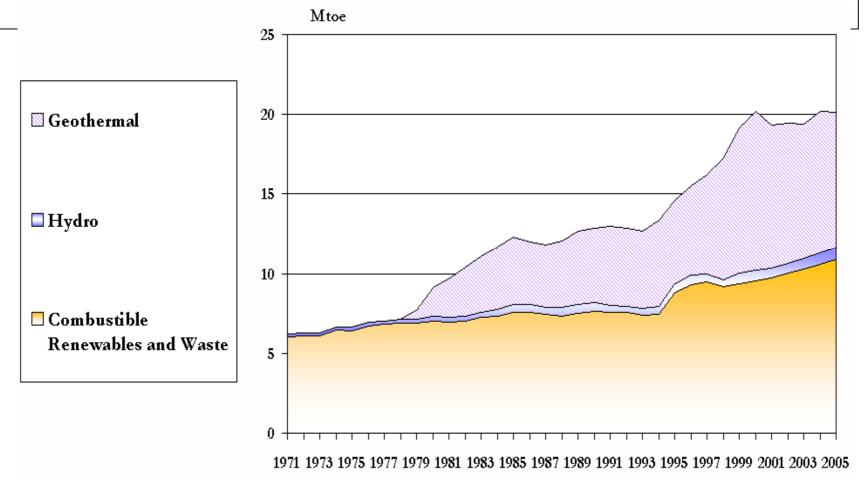
Estimates of Agricultural Residues in Selected Asian Countries in 2006


Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

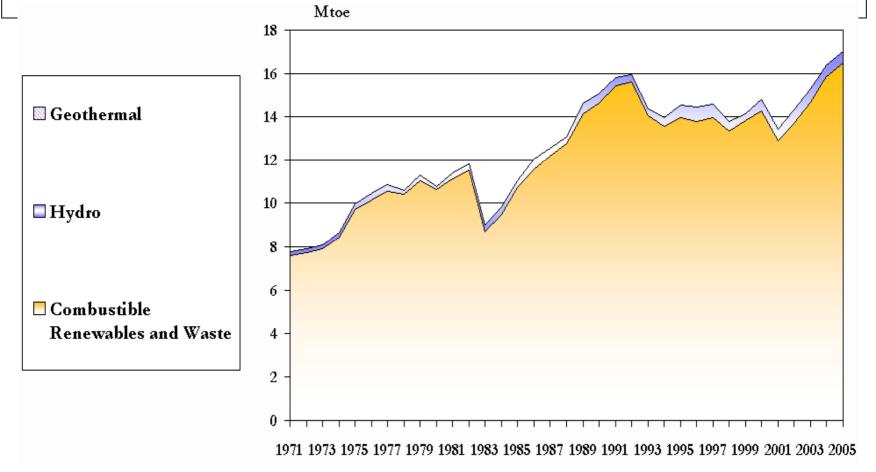
TPES from Renewables in China, 1971-2005


Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

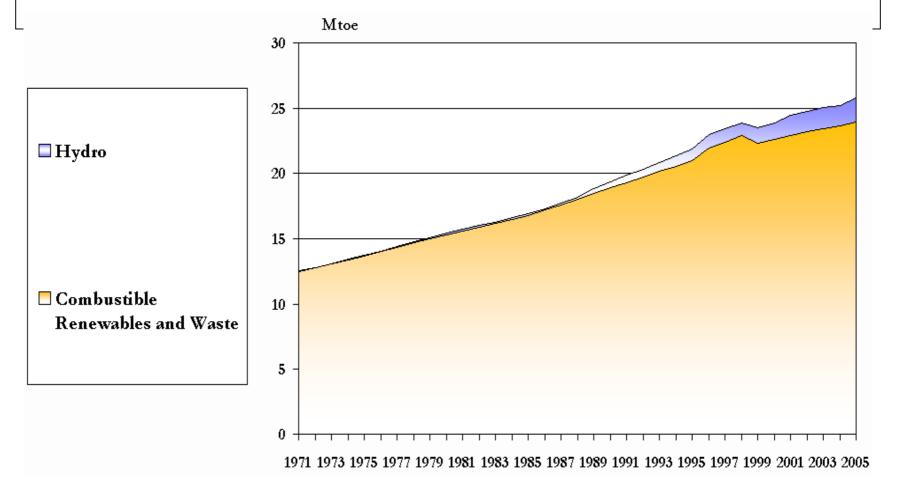
TPES from Renewables in India, 1971-2005


Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

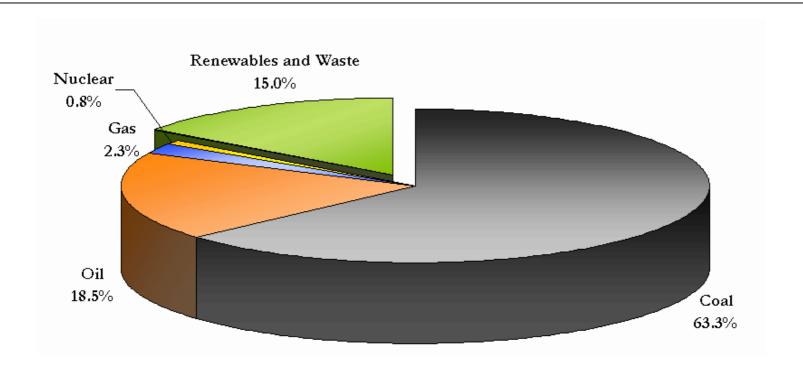
TPES from Renewables in Indonesia, 1971-2005

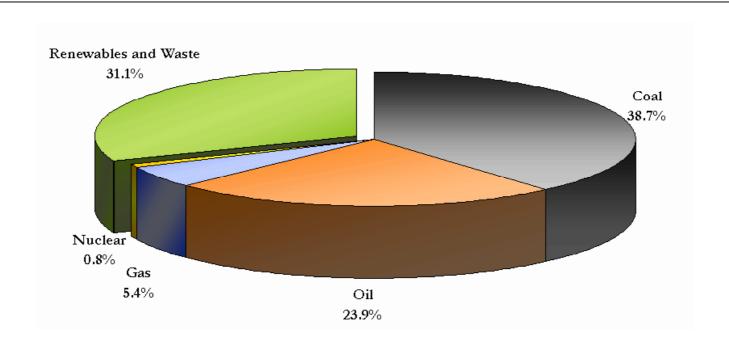


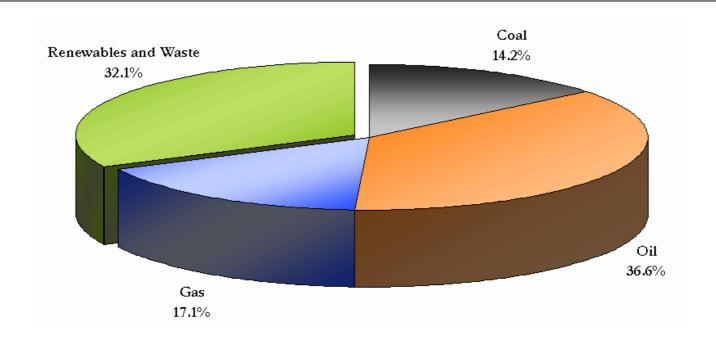
TPES from Renewables in the Philippines, 1971-2005

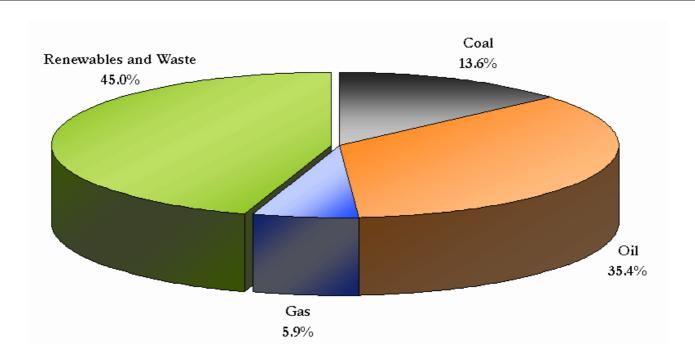


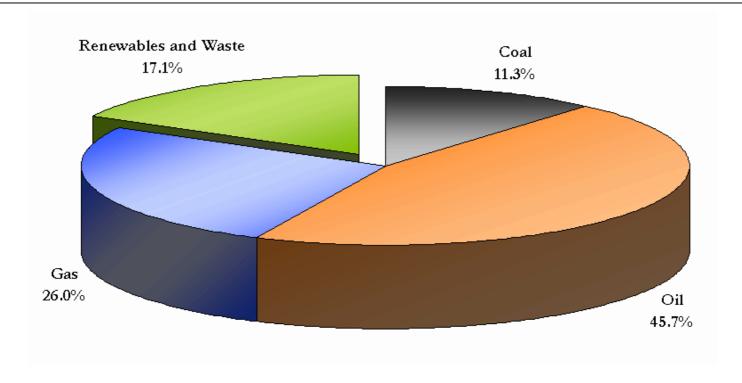
TPES from Renewables in the Thailand, 1971-2005

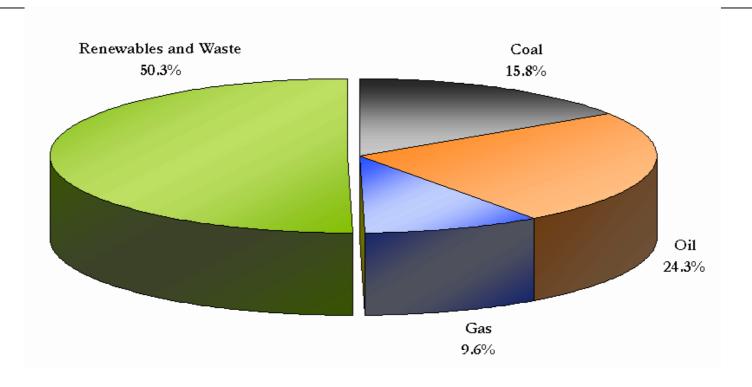


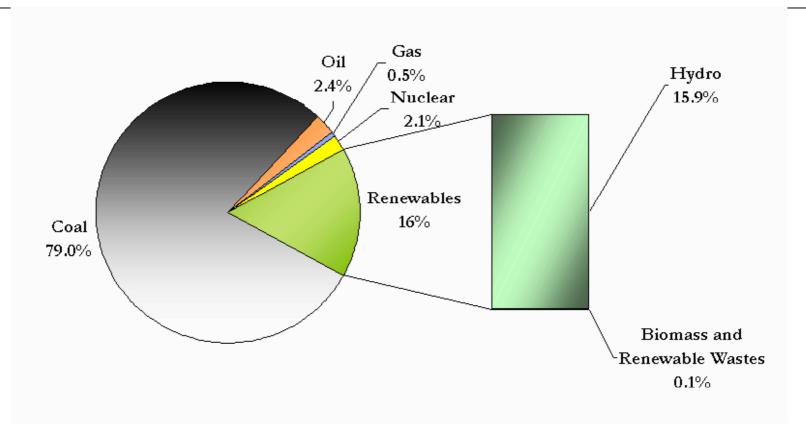

TPES from Renewables in the Viet Nam, 1971-2005

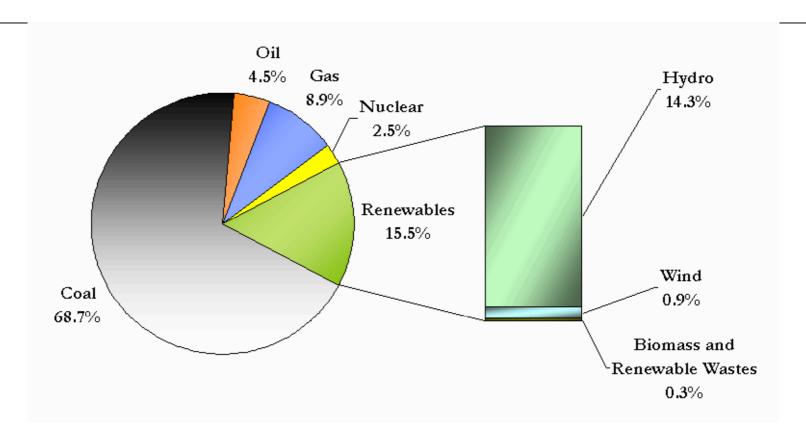

Shares of TPES in China, 2005

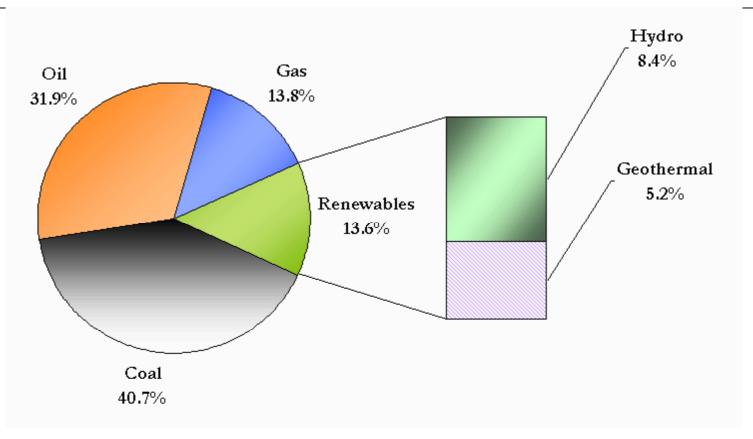

Shares of TPES in India, 2005

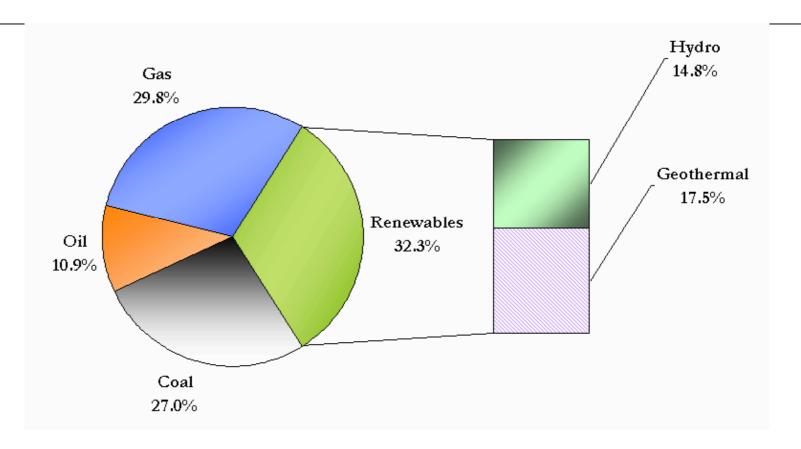

Shares of TPES in Indonesia, 2005

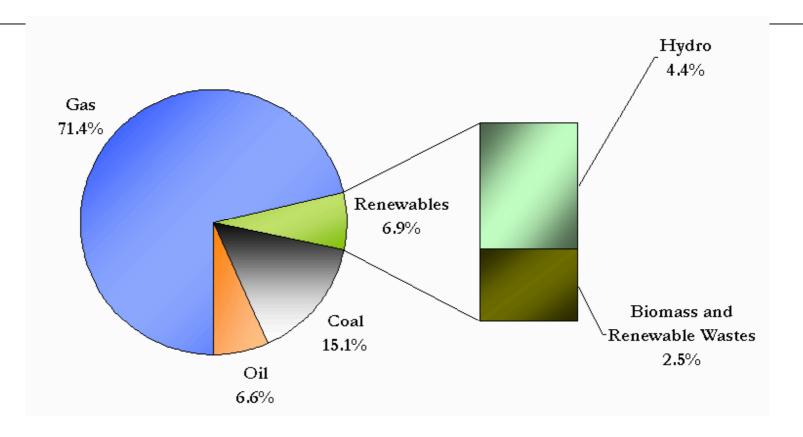

Shares of TPES in the Philippines, 2005

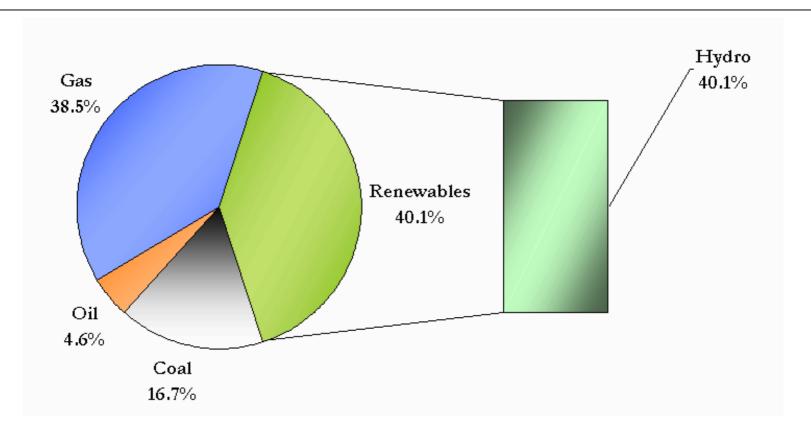

Shares of TPES in the Thailand, 2005


Shares of TPES in the Viet Nam, 2005


China Electricity Generation by Fuel Type, 2005


Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM) India Electricity Generation by Fuel Type, 2005


Indonesia Electricity Generation by Fuel Type, 2005


Philippines Electricity Generation by Fuel Type, 2005

Thailand Electricity Generation by Fuel Type, 2005

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM) Viet Nam Electricity Generation by Fuel Type, 2005

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Targets of Different Asian Countries

Country	Target year	RE target (MW)	Bioenergy target (MW)
China	2010	10% of Electricity 5% Primary energy	6,000
India	2003-2012	10% of Electricity power capacity-10,000 MW	-
Indonesia	2025	15% of Total energy 2875 MW	810
Malaysia	2020	20% of Energy mix	-
Philippines	2013	9,265 MW	170 MW based on the perceived projects
Thailand	2011	8% of Total energy	853
Vietnam	-	21-51 MW 1 st Phase 175-251MW 2 nd Phase	-

Cross-Cutting Issues

- **★Availability and supply of biomass resource**
- **→**Technology selection, implementation and operational issues
- **→** Financial and commercial aspects
- **♦**Policy, regulatory and institutional aspects
- **♦**Socio-economic issues
- **★Environmental aspects**

Conclusions (1)

- ★ Many countries in Asia are endowed with rich agricultural and forest resources that are generating wastes and residues. These could be transformed into bioenergy for industrial, household or community-based activities.
- → Several factors have made production of bioenergy from feedstock such biomass and biogas economically sensible, environmentally beneficial and politically imperative. These include the rise of oil price to unprecedented levels, fuel security, climate change issues and additional benefits from initiatives such as the Clean Development Mechanism (CDM).
- → Proven technologies to convert biomass or biodegradable materials (i.e. municipal solid waste, waste water, etc.) into useful forms of energy for electrical, heating or cooling purposes currently exist. New or next generation technologies also abound in R & D, pilot or demonstration stages. They are expected to contribute in providing more efficient, economical and environmentally friendly solutions in the future.

Conclusions (2)

- → Commercialisation of bioenergy systems brings about the realisation of certain benefits and advantages. However, it also attracts entities with purely commercial interests to participate. This should be balanced with objectives that could involve smaller industries (SMEs), greater access to energy in remote areas, community participation, environmental consciousness, economic growth and social benefits.
- → There are large potentials in developing and disseminating household-based biomass technologies in rural areas, especially with energy efficient modern biomass cooking stoves. Analysis shows that this can produce far more economic, social and environmental benefits than centralised biomass power plants.
- → Biomass and biogas decentralised systems that are implemented in areas where the energy that is produced is supplied on-site where they are needed, could provide solutions for meeting multi-objectives of generating efficient energy supply, cost effectiveness, environmental sustainability, and supporting economic and social growth in the communities.

Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM)

Conclusions (3)

- ★ Lack of strong policy incentives has led to slower response in largescale market uptake of bioenergy technologies, despite wider interest in society and private companies.
- → It has been widely acknowledged that direct government subsidies are not enough and effective in eliciting large-scale market response and action. Market-oriented approach should be adopted to promote widespread dissemination and implementation of bioenergy through actions such as support in making financing more accessible, public-private partnerships, improvement of infrastructure and logistics related to transport and supply of biomass residues, and relevant supporting policies.
- → For developing countries, the ratification of the Kyoto Protocol and participation in CDM is an added boost to the increase of uptake and implementation of bioenergy. In the absence of relevant approved methodologies for biofuels, CDM is not creating the same stimuli for the biofuels sector.

Recommendations (1)

- ★Link micro-credits being operated in rural areas to sustainable energy development.
- ◆Establish national and regional funds to support the move toward sustainable rural energy development.
- →Build various financial instruments into the existing or future programmes financed by the countries at the national and subnational levels.
- ◆Conduct activities to build capacities of relevant stakeholders in tapping the financial markets and in mobilising funds from multilateral, bilateral, international and domestic sources.
- **★**Establish preferential tax policies to help reduce the costs of those companies involved in R&D, innovation, manufacturing, market expansion, demonstration and operation of bioenergy.

Recommendations (2)

- ★ Impose a carbon tax on fossil fuels to narrow the cost differences between renewable energies and fossil fuels.
- → Implement policies on technology/product standards and regulations, through active engagement of regional authorities, counties, municipalities, and NGOs, such as rural renewable energy associations.
- → Aim for the replacement of coal-burning stoves and traditional biomass-burning stoves through wider market application and deployment of energy-efficient biomass stoves via favourable policies, technology innovation and market dissemination efforts.
- ◆ Create programmes and mechanisms to help developers buy down development risks by supporting development activities such as: conduct of feasibility studies, technology selection, environmental impact assessment, permitting and consents, activities to secure fuel supply and off-take of bioenergy products, legal considerations and mobilisation of funds.

Recommendations (3)

- ★ Formulate and implement policies encouraging and supporting the grid connection and appropriate feed-in tariffs for electricity produced from bioenergy systems.
- → Strengthen bioenergy market service in the areas of technology selection, biomass resource identification and collection, transportation, storage, and product services, and project development and implementation
- → Design and implement measures to help the development of the service sector, such as capacity building through training, human resource development and information sharing
- → Formulate strategies to integrate sustainable energy into economic development policies and programmes
- ◆ Conduct further investigations and market researches in order to draw lessons and experience from the past development, identify key market and policy barriers, and formulate new innovative mechanisms, with the aim to reduce risks and improve the cost-effectiveness of bioenergy investments.

Recommendations (4)

- ★ Take advantage of the benefits brought about by global and international commitments and actions related to trade, poverty alleviation, climate change, and the environment.
- → Design relevant standards, monitoring and inspection systems for rural biomass applications.
- → Solicit active engagement of key stakeholders to ensure successful dissemination of locally applicable technologies that respect local culture and context. Substantial interest and participation can be mobilised through the involvement of local residents, community leaders, relevant government agencies and enterprises.
- → Formulate appropriate CDM methodologies to support the application & registration of clean and efficient bioenergy systems.