Harvesting and Post-Harvest

$$
\begin{gathered}
\text { Mechanization } \\
\text { Pakistan Overview }
\end{gathered}
$$

By
 Badar Munir Khan Niazi Scientific Officer Pakistan Agricultural Research Council Islamabad-Pakistan

Facts About Pakistan Agriculture

o Population: 200 million - Area:

Total:
79.61 m ha

Cultivated: 22.05 m ha Irrigated: 18.92 m ha (86\%) Rain-fed: 3.13 m ha (14\%)

- Predominantly an arid and semi-arid country with 68 m ha (85%) where rainfall is less than 300 mm

Agriculture: Contribution to GDP

GDP Share

Contributes 19.5 percent to GDP

Agriculture: Employment Share

Agriculture: Exports Share

- Food and Agriculture
\square Petrolium Industry
\square Manufacturing
\square Textile Industry
All Others

Contributes around 65% to exports of the country

Major Crops of Pakistan

Crop	Area $(000 \mathrm{ha})$	Production $(000$ tones $)$	Yield $(\mathbf{k g} / \mathrm{ha})$
Wheat	9,052	25,750	2,845
Cotton	2,489	10,671	730
Rice	2,724	6,849	2,514
Sugarcane	1,217	73,607	60,428

Mechanization Extent of Crop Production Operations

Crop	Land Preparation	Sowing	Irrigation	Spraying	Inter-culture	Harvesting	Threshing
Wheat	Highly mechanized	Low mechanized	Semimechanized	Low mechanized	Nil	Semimechanized	Highly mechanized
Cotton	Highly mechanized	Semimechanized	Semimechanized	Highly mechanized	Highly mechanized	Nil	-
Rice	Highly Mechanized	Nil	Semimechanized	Low mechanized	-	Semimechanized	Semimechanized
Sugarcane	Highly mechanized	Simimechanized	Semimechanized	Semimechanized	Semimechanized	Nil	-
Potafo	Highly mechanized	Semimechanized	Semimechanized	Highly mechanized	Highly mechanized	Semimechanized	-

Power Available for Agricultural Operations

Power Source	Numbers	kW/Unit	Power Available (million kW)	Share of Each Source (\%)
Agricultural Labor Force (Million)	27.54	0.075	2.07	5.82
Work Animal (Million)	2.42	0.4	0.97	2.73
Medium size Tractors - 80\% of total population	$4,56,320$	37	16.88	47.48
Large size tractors - 20\% of tołal population	$1,14,080$	51	5.82	16.37
Tube wells (Diesel, electric, others)	$13,15,000$	7.457	9.81	27.60
Total Power (million kW)			35.55	
Total cultivated area (million ha)			22.01	
Power available (kW/ha)	1.53			

Pakistan Land Holding Statistics

> 5.35 million farms cover less than 5 acre land which is 65% of the total farming community. These subsistence farmers occupy 10.18 million acres which is 19% of the total cultivated area.
> 2.05 million farms cover $5-12.5$ acre of land which is 25% of the total farming community. These subsistence farmers occupy 15.24 million acres which is 29% of the total cultivated area.
>0.87 million farms cover more than 12.5 acre land which is 10.31% of the total farming community. These medium to large farmers occupy 27.49 million acres which is 52% of the total cultivated area.

Wheat Crop Mechanization

Wheat Drill

Wheat thresher

Multi crop reaper

Rice Crop Mechanization

Rice thresher

Rice thresher

Rice Thresher

Fruit Orchards Mechanization

Vegetable Mechanization

Potato planter

Vegetable ridger

Fodder Harvesting

Crop Residue Management

Wheat Straw Chopper Blower

Mobile Hay Baler

Machinery Needed for Adaptation and Demonstration

> Potato production and harvesting machinery
> Post-harvest handling and processing (fruits and vegetables)
> Fruit harvesting machinery (Apple, citrus, olives and berries)
> Cotton harvesting machinery
> Sugarcane harvesting machinery
> Pulses harvesting and processing machinery

- Alternate energy technologies for value addition

Technologies Developed/Commercialized by PARC

> Reaper-windrower
> Zero-till Drill
> Wheat Straw Chopper
> Paddy Thresher
> Fertilizer Band Placement Drill

- Mango Picking Machine Mobile Flat-bed Dryer
Olive Oil Extraction Unit
Milking Machine for Buffaloes
> Solar-cum-Gas Fired Dates Dryer
> Solar Tunnel Dates Dryer
> Mobile Seed Processing Unit
- Seeder For Combined Harvested Paddy Fields
Onion Seed Planter
Psyllium processing technologies
Wood chipper shredder

Post-harvest losses in Pakistan

Fruits Post-harvest losses in Pakistan

Fruit	Postharvest Losses (\%)
Citrus	14.6
Mango	25.2
Date	34.6
Guava	34.5
Banana	32.1
Apple	13.6
Others	24

Crops* Post-harvest Losses at Different Stages in Pakistan

Stage	Losses (\%)	
	1	Max.
Handling	2	3
Threshing	2	7
Drying	1	6
Storage	2	5
Transport	2	6
Total	10	10

*Crops: Wheat, Rice, Corn

Role of Post-harvest Processing in Food Security

> Improving crop productivity is generally not enough to pull out small farmers out of poverty. Farmers must also add value to their primary production and diversify their range of income-earning activities, both on and off the farm. Surpluses must therefore be stored temporarily, but processed into more stable products
> Processing of agricultural produce has tremendous benefits. It helps to improve postharvest handling. reduce postharvest losses, increase income and improve the livelihoods of small farmers as well as those of the agroprocessors. Agricultural processing also helps to prevent products from spoilage and improve their shelf life. It helps to retain nutritive value of products and ensure availability of products all the year round

PARC Initiatives in Post Harvest

 Processing/Mechanization ResearchPARC Initiatives in Post Harvest Processing Research (Cont,)
> On-farm drying of Sunflower:

PARC Initiatives in Post Harvest Processing Research (Cont,)
> On-farm drying of Canola

PARC Initiatives in Post Harvest Processing Research (Cont,)
> On-farm drying of Ear-Corn:

PARC Initiatives in Post Harvest Processing Research (Cont,)

On-farm drying of dates:
> Solar-cum-gas fired date dryer
$>$ Solar tunnel dryer

PARC Initiatives in Post Harvest Processing Research (Cont,)

Banana value addition:
> Banana Fig
> Banana Chips
> Banana Powder
> Banana Flour

PARC Initiatives in Post Harvest Processing Research (Cont,)
$>$ In-Bin Seed Drying \& Storage Technology
Issue: A considerable amount of seed of various crops is wasted during storage

> Design Capacity:
> Moisture Content:
> Time:
> Cost of drying / ton:
1.5 tons
from 22% to 12%
2-3 days
Rs 1,600
(US\$ 14)

PARC Initiatives in Post Harvest Processing Research (Cont,)

> Olive Oil Extraction Unit

- GoP is emphasizing on olive production in Pakistan as oilseed crop.
- Due to unavailability of mechanical olive oil extraction facility, a significant amount of olive fruit is wasted.
- PARC identified and imported a community based olive oil extraction unit, and indigenized it.

Its processing capacity is about $40 \mathrm{~kg} / \mathrm{h}$.
The operational cost of fresh olive fruit processing was about Rs $9.5 / \mathrm{kg}$ (US\$ $0.1 / \mathrm{kg}$).

Pysullium processing technologies

Psyllium Thresher

Future Prospects of Post-Harvest Processing

Tremendous potential exists in post harvest processing of agricultural produce. The key low cost technologies needed are as follows:
> Seed/grain drying, aeration and storage technologies

- Efficient and safe pulses processing technology

V Vegetable seed processing technologies
Fruit drying and processing technology

- Modified Atmosphere (MA) technology for fruits and vegetables
- Pre-cooling technology for fruit and vegetables

Cool stores for potatoes, citrus, and apples
Fruit and vegetables cleaning, grading, and packing technology

Thank you for your kind attention

